Skip to main content
Log in

Free Radicals in Mercury-Resistant Bacteria Indicate a Novel Metabolic Pathway

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A mercury resistant-soil bacterium P.10.15, identified as a close relative of Pseudomonas veronii, was shown to accumulate a specific compound in the stationary phase of growth. This compound is converted to a long-lived free radical under oxidizing conditions, as registered by its EPR signal at room temperature. The compound was purified by ion-exchange and gel-filtration chromatography and identified by mass spectroscopy, 2D NMR, and EPR as a trisaccharide β-D-GlcpNOH,CH3-(1→6)-α-D-Glcp-(1→1)-α-D-Glcp, or, in other words, as 6-O-(2-deoxy-2-{N-methyl}hydroxylamino-β-D-glucopyranosyl)-α-α-trehalose, previously discovered in Micrococcus luteus (lysodeikticus) and named lysodektose. It is suggested that the compound is a novel intermediate of a previously unknown basic metabolic pathway of trehalose transformation in bacteria, a potential target for antibacterial drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Osborn, A., Bruce, K., Strike, P., and Ritchie, D., Distribution, Diversity and Evolution of the Bacterial Mercury Resistance mer Operon, FEMS Microbiol. Rev., 1997, vol. 19, pp. 239-262.

    Google Scholar 

  2. Biniukov, V., Kharatian, E., Ostrovsky, D., and Shashkov, A., Lysodektose—a New Trisaccharide from Micrococcus lysodeikticus Which Is Transformed into an Aminoxyl Free Radical with the Loss of an Electron, Free Rad. Res. Commun., 1991, vol. 14, pp. 91-95.

    Google Scholar 

  3. Binyukov, V.I., Taptykova, S.D., and Ostrovskii, D.N., A Novel Type of Free-Radical Compounds from Cellular Extracts of Actinomycetes, Mikrobiologiya, 1986, vol. 52, pp. 342-344.

    Google Scholar 

  4. Stepanov, S., Biniukov, V., Kharatian, E., Shumaev, K., and Ostrovsky, D., Interconversion of Radical and Nitron Forms of Lysodektose—a New Trisaccharide from Micrococcus lysodeikticus, BioFactors, 1991, vol. 3, pp. 37-39.

    Google Scholar 

  5. Ostrovskii, D.N., Lysak, E.I., Demina, G.R., and Binyukov, V.I., Interaction of Bacteria with Mercuric Compounds, Mikrobiologiya, 2000, vol. 69, pp. 620-629.

    Google Scholar 

  6. Schloter, M., Lebuhn, M., Heulin, T., and Hartmann, A., Ecology and Evolution of Bacterial Microdiversity, FEMS Microbiol. Lett., 2000, vol. 24, pp. 647-660.

    Google Scholar 

  7. Elomari, M., Coroler, L., Hoste, B., Gillis, M., Izard, D., and Leclerc, H., DNA Relatedness among Pseudomonas Strains Isolated from Natural Mineral Waters and Proposal of Pseudomonas veronii sp. nov., Int. J. Syst. Bacteriol., 1996, vol. 46, pp. 1138-1144.

    Google Scholar 

  8. Adhikari, T., Joseph, C., Yang, G., Phillips, D., and Nelson, L., Evaluation of Bacteria Isolated from Rice for Plant Growth Promotion and Biological Control of Seedling Disease of Rice, Can. J. Microbiol., 2001, vol. 47, pp. 916-924.

    Google Scholar 

  9. Cheuk, W., Woo, P., Yuen, K., Yu, P., and Chan, J., Intestinal Inflammatory Pseudotumour with Regional Lymph Node Involvement: Identification of a New Bacterium as the Aetiological Agent, J. Pathol., 2000, vol. 192, pp. 289-292.

    Google Scholar 

  10. Ullrich, M., Bereswill, S., Volksch, B., Fritsche, W., and Geider, K., Molecular Characterization of Field Isolates of Pseudomonas syringae pv. glycinea Differing in Coronatine Production, J. Gen. Microbiol., 1992, vol. 139, pp. 1927-1937.

    Google Scholar 

  11. Ullrich, M., Pseudomonas syringae—an Opportunistic Plant Pathogen and Saprophyte Controlled by Specific Environmental Factors, Soc. Gen. Microbiol. 149th Meeting, Norwich, 2001, Abstracts, p. 7.

  12. Bender, C., Palmer, D., Penaloza-Vazquez, A., Rangaswamy, V., and Ullrich, M., Biosynthesis and Regulation of Coronatine, a Non-Host Specific Phytotoxin Produced by Pseudomonas syringae, Subcell. Biochem., 1998, vol. 29, pp. 321-341.

    Google Scholar 

  13. Hunter, S., Barr, V., McNeil, M., Jardine, I., and Brennan, P., Trehalose-Containing Lipooligosaccharide Antigens of Mycobacterium sp.: Presence of a Mono-O-Methyltri-O-Acyltrehalose “Core”, Biochemistry, 1988, vol. 27, pp. 1549-1556.

    Google Scholar 

  14. Muller, J., Boller, T., and Wiemken, A., Trehalose Becomes the Most Abundant Non-Structural Carbohydrate during Senescence of Soybean Nodules, J. Exp. Bot., 2001, vol. 52, pp. 943-947.

    Google Scholar 

  15. Canovas, D., Fletcher, S., Hayashi, M., and Csonka, L., Role of Trehalose in Growth at High Temperature of Salmonella enterica Serovar typhimurium, J. Bacteriol., 2001, vol. 183, pp. 3365-3371.

    Google Scholar 

  16. Besra, G., Khoo, K., Belisle, J., McNeil, M., Morris, H., Dell, A., and Brennan, P., New Pyruvylated, Glycosylated Acyltrehaloses from Mycobacterium smegmatis Strains, and Their Implications for Phage Resistance in Mycobacteria, Carbohydr. Res., 1994, vol. 251, pp. 99-114.

    Google Scholar 

  17. Lima, V., Bonato, V., Lima, K., Dos Santos, S., Dos Santos, R., Goncalves, E., Faccioli, L., Rodrigues-Junior, J., and Silva, C., Role of Trehalose Dimycolate in Recruitment of Cells and Modulation of Production of Cytokines and NO in Tuberculosis, Infect. Immun., 2001, vol. 69, pp. 5305-5312.

    Google Scholar 

  18. Madonna, G., Ledney, G., Elliott, T., Brook, I., Ulrich, J., Myers, K., Patchen, M., and Walker, R., Trehalose Dimycolate Enhances Resistance to Infection in Neutropenic Animals, Infect. Immun., 1989, vol. 57, pp. 2495-2501.

    Google Scholar 

  19. Ryll, R., Watanabe, K., Fujiwara, N., Takimoto, H., Hasunuma, R., Kumazawa, Y., Okada, M., and Yano, I., Mycobacterial Cord Factor, but not Sulfolipid, Causes Depletion of NKT Cells and Upregulation of CD1d1 on Murine Macrophages, Microbes Infect., 2001, vol. 3, pp. 611-619.

    Google Scholar 

  20. Sode, K., Akaike, E., Sugiura, H., and Tsugawa, W., Enzymatic Synthesis of a Novel Trehalose Derivative, 3,3′-Diketotrehalose, and Its Potential Application as the Trehalase Enzyme Inhibitor, FEBS Lett., 2001, vol. 489, pp. 42-45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrovsky, D.N., Diomina, G.R., Biniukov, V.I. et al. Free Radicals in Mercury-Resistant Bacteria Indicate a Novel Metabolic Pathway. Microbiology 72, 528–533 (2003). https://doi.org/10.1023/A:1026030930591

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026030930591

Navigation