Skip to main content
Log in

Thermal Expansion of Troilite and Pyrrhotine in Helium and Air

  • Published:
Inorganic Materials Aims and scope

Abstract

High-temperature x-ray diffraction is used to determine the lattice parameters of synthetic troilite (sealed-ampule method) and pyrrhotine prepared via thermal dissociation of natural pyrite. The results are presented in the form of best fit polynomials in temperature. The gaseous environment (helium or air) is found to have a significant effect on the temperature variation of the lattice parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Vaughan, D., Sulfide Mineralogy: A Review with Special Reference to Phases of Interest in Hydrometallurgy, Proc. NATO Adv. Res. Inst., 1984, pp. 1–22.

  2. Vaughan, D and Craig, J., Mineral Chemistry of Metal Sulfides, Cambridge: Cambridge Univ. Press, 1978. Translated under the title Khimiya sul'fidnykh mineralov, Moscow: Mir, 1981.

    Google Scholar 

  3. Novikov, G.V., Egorov, V.K., and Sokolov, Yu.A., Pirrotiny (Pyrrhotines), Moscow: Nauka, 1988.

    Google Scholar 

  4. Vanyukov, L.V., Isakova, R.A., and Bystrov, V.P., Termicheskaya dissotsiatsiya sul'fidov metallov (Thermal Dissociation of Metal Sulfides), Almaty: Nauka, 1978.

    Google Scholar 

  5. Putnis, A., Electron-Optical Observation on the ?-Transformation in Troilite, Science (Washington, D. C., 1883– 1974, vol. 186, pp. 439–440.

    Google Scholar 

  6. Koller-Besrest, F. and Collin, G., Structural Aspects of the ?-Transition in Stoichiometric FeS, J. Solid State Chem., 1990, vol. 84, no. 2, pp. 194–197.

    Google Scholar 

  7. Moldenhauer, W. and Briikner, W., Physical Properties of Nonstoichiometric Iron Sulfides Fe1 -x S near ?-Transition, Phys. Status Solidi A, 1976, vol. 34, pp. 565–571.

    Google Scholar 

  8. Bertant, E.F., Structure de FeS stoechiométrique, Bull. Soc. Fr. Mineral. Cristallogr., 1956, vol. 79, pp. 276–292.

    Google Scholar 

  9. Turkhan, Yu.E., Blankova, E.B., Kelarev, V.V., and Vakhmenin, A.P., Neutron and X-ray Diffraction Studies of Phase Transitions in Fe1.00S1 -x Sex Solid Solutions, Fizika metallov i ikh soedinenii (Physics of Metals and Their Compounds), Sverdlovsk: Ural. Gos. Univ., 1981, pp. 3–8.

    Google Scholar 

  10. Abishev, D.N. and Baltynova, N.Z., Termomagnitnoe obogashchenie piritsoderzhashchego syr'ya (Thermomagnetic Dressing of Pyrite-Containing Raw Materials), Almaty: Nauka, 1986.

    Google Scholar 

  11. Blankova, E.B., Skryabina, S.N., and Turkhan, Yu.E., Thermal Expansion of Iron Monosulfide, Fiz. Met. Ikh Soedin., 1976, no. 4, pp. 3–8.

    Google Scholar 

  12. -x S, Geokhimiya, 1982, no. 8, pp. 1189–1194.

  13. Vershinin, A.D., Selivanov, E.N., and Danilushkin, A.L., Thermal Expansion and Decomposition of FeS2 -x and CuFeS2 -x , Neorg. Mater., 1998, vol. 34, no. 12, pp. 1423–1427 [Inorg. Mater. (Engl. Transl.), vol. 34, no. 12, pp. 1198–1202].

    Google Scholar 

  14. Vershinin, A.D. and Selivanov, E.N., Thermal Expansion of Arsenopyrite in Helium and Air, Neorg. Mater., 2000, vol. 36, no. 6, pp. 672–676 [Inorg. Mater. (Engl. Transl.), vol. 36, no. 6, pp. 551–555].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selivanov, E.N., Vershinin, A.D. & Gulyaeva, R.I. Thermal Expansion of Troilite and Pyrrhotine in Helium and Air. Inorganic Materials 39, 1097–1102 (2003). https://doi.org/10.1023/A:1026007729489

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026007729489

Keywords

Navigation