Skip to main content
Log in

Effect of Microaccelerations on the Distribution of a Dopant in a Semiconductor Melt during Space Flight

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The effect of residual microaccelerations on the distribution of a dopant in a semiconductor melt located in a heated closed cavity onboard an Earth-orbiting satellite is considered in the context of a model problem of thermal convection. The amplitude–frequency characteristics of the response of this distribution to the perturbing microaccelerations are obtained. It is demonstrated that the effect of low-frequency microaccelerations decreases when the frequency increases. A comparison is made of the macroscopic inhomogeneities of the dopant concentration due to the actual low-frequency (quasi-static) component of microaccelerations onboard different spacecraft: the orbital station Mir, the satellite Foton-11, a Space Shuttle orbiter, and the International Space Station. A substantial effect of the rotational motion of the spacecraft on the character of the time behavior of a macroscopic inhomogeneity is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Zemskov, V.S., Investigation of Crystals of Solid Solutions Germanium–Silicon–Stibium Obtained in the “Universal Stove” Experiment of the Soyuz–Apollo Program, Fiz. Tverd. Tela, 1978, vol. 21, no. 4, pp. 979–1000.

    Google Scholar 

  2. Ivanov, L.A., Zemskov, V.S., Kubasov, V.I., et al., Plavlenie, kristallizatsiya i fazoobrazovanie v nevesomosti (Melting, Crystallization, and Phase Formation under Zero Gravity), Moscow: Nauka, 1979.

    Google Scholar 

  3. Polezhaev, V.I. and Fedyushkin, A.I., Hydrodynamic Effects of Concentration Stratification in Closed Volumes, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1980, no. 3, pp. 11–18.

    Google Scholar 

  4. Polezhaev, V.I., Effect of Maximum in Temperature Stratification and Its Applications, Dokl. Akad. Nauk SSSR, 1974, vol. 218, no. 4, pp. 783–786.

    Google Scholar 

  5. Lebedev, A.P. and Polezhaev, V.I., Mathematical Modeling of Perturbing Accelerations in Experimental Space Technology, in Gidromekhanika i teploobmen v nevesomosti (Hydromechanics and Heat Exchange under Zero Gravity), Avduevskii, V.S. and Polezhaev, V.I., Eds., Moscow: Nauka, 1982, pp. 163–173.

    Google Scholar 

  6. Sarychev, V.A., Belyaev, M.Yu., Sazonov, V.V., and Tyan, T.N., Determination of Microaccelerations on Orbital Spacecraft Clusters Salyut-6 and Salyut-7, Kosm. Issled., 1986, vol. 24, no. 3, pp. 337–344.

    Google Scholar 

  7. Polezhaev, V.I., Lebedev, A.P., and Nikitin, S.A., Mathematical Simulation of Disturbing Forces and Material Sciences Processes under Low Gravity, Proc. 5th Symp. on Material Sciences under Microgravity, Noordwijk, Netherlands, 1984, ESA, pp. 237–243.

  8. Alexander, J.I.D., Low Gravity Experiment Sensitivity of Residual Acceleration: A Review, Microgravity Sciences and Technology, 1990, vol. 3, p. 52.

    Google Scholar 

  9. Polezhaev, V.I., Bello, M.S., et al., Konvektivnye protsessy v nevesomosti (Convective Processes under Zero Gravity), Moscow: Nauka, 1991.

    Google Scholar 

  10. Zemskov, V.S., New Insight into the Processes Accompanying Directional Crystallization of Solvents as a Result of Spacecraft Experiments on Crystal Growth, Sbornik trudov VII Rossiiskogo simpoziuma “Mekhanika nevesomosti. Itogi i perspektivy fundamental'nykh issledovanii gravitatsionno chuvstvitel'nykh sistem” (Proceedings of VII Russian Symposium “Mechanics of Zero Gravity: Results and Prospects of Fundamental Research of Gravitationally Sensitive Systems”), Moscow: Keldysh Inst. Appl. Math. Russ. Acad. Sci., 2001, pp. 34–51.

    Google Scholar 

  11. Zemskov, V.S., Raukhman, M.R., and Shalimov, V.P., Gravitational Sensitivity of Solutions–Melts at the Crystallization of Two-Phase InSb-InBi Alloys under Space Conditions, Kosm. Issled., 2001, vol. 39, no. 4, pp. 384–389.

    Google Scholar 

  12. Sazonov, V.V., Komarov, M.M., Belyaev, M.Yu., et al., Estimation of Quasistatic Component of Microacceleration onboard Earth-Orbiting Satellite, Preprint of Keldysh Inst. of Applied Math., Russ. Acad. Sci., Moscow, 1995, no. 45.

  13. Sazonov, V.V., Komarov, M.M., Polezhaev, V.I., et al., Microaccelerations onboard the Mir Orbital Station and Prompt Analysis of Gravitational Sensitivity of Convective Processes of Heat and Mass Transfer, Kosm. Issled., 1999, vol. 37, no. 1, pp. 86–101.

    Google Scholar 

  14. Sazonov, V.V., Belyaev, M.Yu., Efimov, N.I., and Stazhkov, V.M., Determination of Quasistatic Component of Microaccelerations at the Mir Station, Kosm. Issled., 2001, vol. 39, no. 2, pp. 136–147.

    Google Scholar 

  15. Sazonov, V.V., Chebukov, S.Yu., Abrashkin, V.I., et al., Analysis of Low-Frequency Microaccelerations onboard the Foton-11 Satellite, Kosm. Issled., 2001, vol. 39, no. 4, pp. 419–435.

    Google Scholar 

  16. Abrashkin, V.I., Balakin, V.L., Belokonov, I.V., et al., Determination of Rotational Motion of the Foton-12 Satellite Using the Data of Onboard Measurements of the Earth's Magnetic Field, Preprint of Keldysh Inst. of Applied Math., Russ. Acad. Sci., Moscow, 2000, no. 60.

  17. Vetlov, V.I., Novichkova, S.M., Sazonov, V.V., et al., The Mode of Gravitational Orientation for the International Space Station, Kosm. Issled., vol. 39, no. 4, pp. 436–448.

  18. Nikitin, S.A., Polezhaev, V.I., and Sazonov, V.V., Measurement of the Quasistatic Component of Microaccelerations Using a Convection Sensor onboard a Satellite, Kosm. Issled., 2001, vol. 39, no. 2, pp. 179–187.

    Google Scholar 

  19. Polezhaev, V.I., Microacceleration Modes, Gravitational Sensitivity, and the Methods of Analysis of Technological Experiments under Conditions of Zero Gravity, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, 1994, no. 5, pp. 22–36.

    Google Scholar 

  20. Ermakov, M.K., Nikitin, S.A., and Polezhaev, V.I., System and Computer Laboratory for Solving Problems of Convection and Heat and Mass Transfer, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, 1997, no. 3, pp. 22–38.

    Google Scholar 

  21. Myakshina, M.N., Nikitin, S.A., Polezhaev, V.I., and Sazonov, V.V., The Effect of Quasistatic Component of Microaccelerations on the Distribution of Dopants during Space Flight, Sbornik trudov VII Rossiiskogo simpoziuma “Mekhanika nevesomosti. Itogi i perspektivy fundamental'nykh issledovanii gravitatsionno-chuvstvitel'nykh sistem” (Proceedings of VII Russian Symposium "Mechanics of Zero Gravity: Results and Prospects of Fundamental Research of Gravitationally Sensitive Systems"), Moscow: Keldysh Inst. Appl. Math. Russ. Acad. Sci., 2001, pp. 149–165.

    Google Scholar 

  22. Farnell, A.B., Langenhop, C.E., and Levinson, N., Forced Periodic Solutions of a Stable Nonlinear System of Differential Equations, J. of Mathematics and Physics, 1950, vol. 29, pp. 300–302.

    Google Scholar 

  23. Bessonov, O.A., Brailovskaya, V.A., and Polezhaev, V.I., Spatial Effects of Convection in Melts: Concentration Irregularities, Origination of Asymmetry, and Vibrations, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, 1997, no. 3, pp. 74–82.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitin, S.A., Polezhaev, V.I. & Sazonov, V.V. Effect of Microaccelerations on the Distribution of a Dopant in a Semiconductor Melt during Space Flight. Cosmic Research 41, 502–516 (2003). https://doi.org/10.1023/A:1026006518527

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026006518527

Keywords

Navigation