Skip to main content
Log in

Information Support for a Low-Orbit Spacecraft Using Magnetometer and Solar Sensor Readings

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The problem of estimation of the orbital and attitude motion parameters of a spacecraft using readings of a three-axis onboard magnetometer and solar sensor with considerable uncertainty of the initial conditions is solved. Primary attention is paid to improvement of the observability of the desired parameters and acceleration of the estimation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lebedev, D.V. and Tkachenko, A.I., A Magnetometric System of Determining the Parameters of Motion of a Spacecraft, Probl. Upravl. Informat., 1997, no. 4, pp. 139–154.

    Google Scholar 

  2. Brandin, V.N. and Razorenov, G.N., Opredelenie traektorii kosmicheskikh apparatov (Determination of Trajectories of Space Vehicles), Moscow: Mashinostroenie, 1978.

    Google Scholar 

  3. Efimenko, N.V., Kolotovkin, A.V., Triskalo, V.I., and Shvets, K.V., A Magnetometric System of Attitude Determination for Spacecraft, 5 Ukr. konferentsiya po avtomaticheskomu upravleniyu Avtomatika-98 (5 Ukranian Conference on Automatic Control Automation-98), Part 2, Kiev: Pratsi, 1998, pp. 50–59.

    Google Scholar 

  4. Efimenko, N.V., Synthesis and Analysis of Control Algorithms for Magnetic Systems of Orientation and Stabilization of Space Microplatforms, Cand. Sc. (Techn.) Dissertation, Kharkov, 1999.

  5. Gur'ev, I.S., Adaptivnye magnitometricheskie sistemy kontrolya prostranstvennogo polozheniya (Adaptive Magnetometric Systems of Attitude Control), Leningrad: Energoizdat, 1985.

    Google Scholar 

  6. Sarychev, V.A., Belyaev, M.Yu., Sazonov, V.V., and Tyan, T.N., Determination of Motion of the Orbital Complexes Salyut-6 and Salyut-7 Relative to Their Center of Mass in the Mode of Gravitational Orientation Using the Data of Measurements, Kosm. Issled., 1985, vol. 23, no. 6, pp. 829–842.

    Google Scholar 

  7. Psiaki, M.L., Martel, F., and Pal, P.K., Three-Axis Attitude Determination via Kalman Filtering of Magnetometer Data, J. Guid., Control, and Dynamics, 1990, vol. 13, no. 3, pp. 506–514.

    Google Scholar 

  8. Efimenko, N.V., Kolotovkin, A.V., Novikov, A.K., et al., Sistema avtonomnoi navigatsii po magnitnomu polyu Zemli, 3–ya Ukr. konferentsiya po avtomaticheskomu upravleniyu Avtomatika-96 (3rd Ukranian Conference on Automatic Control “Automation-96”), Sevastopol: SevGTU, 1996, vol. 3, pp. 75–76.

    Google Scholar 

  9. Lebedev, D.V. and Tkachenko, A.I., Control over Spherical Motion of a Spacecraft in Earth's Magnetic Field, Pt. II. Orientation and Stabilization, Problemy Upravl. Informat., 1996, no. 3, pp. 5–18.

    Google Scholar 

  10. Psiaki, M.L., Autonomous Low-Earth-Orbit Determination from Magnetometer and Sun Sensor Data, J. Guid., Control, and Dynamics, 1997, vol. 22, no. 2, pp. 296–305.

    Google Scholar 

  11. Kovalenko, A.P., Magnitnye sistemy upravleniya kosmicheskimi letatel'nymi apparatami (Magnetic Systems of Control over Space Vehicles), Moscow: Mashinostroenie, 1975.

    Google Scholar 

  12. Baryshev, V.A. and Krylov, G.N., Kontrol' orientatsii meteorologicheskikh sputnikov (Attitude Control of Meteorological Satellites), Leningrad: Gidrometeoizdat, 1968.

    Google Scholar 

  13. Duboshin, G.N., Nebesnaya mekhanika. Osnovnye zadachi i metody (Celestial Mechanics: Fundamental Problems and Methods), Moscow: Nauka, 1975.

    Google Scholar 

  14. Tkachenko, A.I., Determination of Spacecraft Attitude Using Readings from Two Magnetometers, Kosm. Issled., vol. 38, no. 3, pp. 322–330.

  15. Lur'e, A.I., Analiticheskaya mekhanika (Analytical Mechanics), Moscow: Fizmatgiz, 1961.

    Google Scholar 

  16. Beletskii, V.V. and Khentov, A.A., Vrashchatel'noe dvizhenie namagnichennogo sputnika (Rotational Motion of a Magnetized Satellite), Moscow: Nauka, 1985.

    Google Scholar 

  17. Bakan, G.M., Algorithms of Constructing Reliable and Fuzzy Ellipsoidal Estimates in Linear Systems Based on the Least Squares Method, Problemy Upravl. Informat., 1995, no. 3, pp. 117–129.

    Google Scholar 

  18. Lawson, C.L. and Hanson, R.J., Solving Least Squares Problems, Englewood Cliffs: Prentice-Hall, 1974.

    Google Scholar 

  19. Shuster, M.D. and Oh, S.D., Three-Axis Attitude Determination from Vector Observations, J. Guidance and Control, 1981, vol. 4, no. 1, pp. 70–77.

    Google Scholar 

  20. Golovkov, V.P. and Kolomiitseva, G.I., International Analytical Field and Its Secular Trend for the Interval 1980–1990, Geomagn. Aeron., 1986, vol. 26, no. 3, pp.-523–525.

    Google Scholar 

  21. Lebedev, D.V. and Tkachenko, A.I., Attitude Control of Spacecraft Using a Magnetic Satellite Information System, Pt. II, Problemy Upravl. Informat., 2001, no. 1, pp. 79–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkachenko, A.I. Information Support for a Low-Orbit Spacecraft Using Magnetometer and Solar Sensor Readings. Cosmic Research 41, 485–493 (2003). https://doi.org/10.1023/A:1026002417619

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026002417619

Keywords

Navigation