Skip to main content

Advertisement

Log in

Function of PEA3 Ets Transcription Factors in Mammary Gland Development and Oncogenesis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The Ets gene families of mice and man currently comprise 27 genes that encode sequence-specific transcription factors. Ets proteins share an ∼85 amino acid structurally conserved ETS DNA binding domain. Genetic analyses in model organisms suggest roles for Ets proteins in embryonic development and various adult physiological processes. Chromosomal translocations involving several ETS genes are associated with Ewing's sarcomas and leukemias, whereas the overexpression of some ETS genes is linked with numerous malignancies, including breast cancer. Indeed PEA3, ETS-1, PDEF, and ELF-3 transcripts have all been reported to be elevated in human breast tumors. Some of the ETS genes that are overexpressed in human breast tumors are also overexpressed in mouse models of this disease. Notably, pea3, as well as its close paralogs er81 and erm, which comprise the pea3 subfamily of ets genes, are coordinately overexpressed in mouse mammary tumors. Genetic analyses in mice reveal required roles for one or more of the PEA3 subfamily Ets proteins in the initiation and progression of mouse mammary tumors. The pea3 subfamily genes are normally expressed in the primitive epithelium of mouse mammary buds during embryogenesis, and these three genes are expressed in epithelial progenitor cells during postnatal mammary gland development. Loss-of-function mutations in the mouse pea3 gene results in increased numbers of terminal end buds and an increased fraction of proliferating cells in these structures, suggesting a role for PEA3 in progenitor cell renewal or terminal differentiation. Taken together these observations suggest that the PEA3 subfamily proteins play key regulatory roles in both mammary gland development and oncogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Z. Xuan, W. R. McCombie, and M. Q. Zhang (2002). GFScan: Agene family search tool at genomic DNAlevel. Genome Res. 12:1142–1149.

    PubMed  Google Scholar 

  2. V. Laudet, C. Hanni, D. Stehelin, and M. Duterque-Coquillaud (1999). Molecular phylogeny of the ETS gene family. Oncogene 18:1351–1359.

    PubMed  Google Scholar 

  3. B. J. Graves and J. M. Petersen (1998). Specificity within the ets family of transcription factors. Adv. Cancer Res. 75:1–55.

    PubMed  Google Scholar 

  4. A. D. Sharrocks (2001). The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2:827–837.

    PubMed  Google Scholar 

  5. T. Oikawa and T. Yamada (2003). Molecular biology of the Ets family of transcription factors. Gene 303:11–34.

    PubMed  Google Scholar 

  6. B. B. Bojovic and J. A. Hassell (2001). The PEA3 Ets transcription factor comprises multiple domains that regulate transactivation and DNA binding. J. Biol. Chem. 276:4509–4521.

    PubMed  Google Scholar 

  7. B. J. Graves, D. O. Cowley, T. L. Goetz, J. M. Petersen, M. D. Jonsen, and M. E. Gillespie (1998). Autoinhibition as a transcriptional regulatory mechanism. Cold Spring Harb. Symp. Quant. Biol. 63:621–629.

    PubMed  Google Scholar 

  8. B. J. Graves, M. E. Gillespie, and L. P. McIntosh (1996). DNA binding by the ETS domain. Nature 384:322.

    PubMed  Google Scholar 

  9. A. Verger and M. Duterque-Coquillaud (2002). When Ets transcription factors meet their partners. Bioessays 24:362–370.

    PubMed  Google Scholar 

  10. A. D. Sharrocks (2002). Complexities in ETS-domain transcription factor function and regulation: Lessons from the TCF (Ternary Complex Factor) subfamily. Biochem Soc. Trans. 30:1–9.

    PubMed  Google Scholar 

  11. B. Wasylyk, J. Hagman, and A. Gutierrez-Hartmann (1998). Ets transcription factors: Nuclear effectors of the Ras-MAP-kinase signaling pathway. Trends Biochem. Sci. 23:213–216.

    PubMed  Google Scholar 

  12. R. Marais, J. Wynne, and R. Treisman (1993). The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73:381–393.

    PubMed  Google Scholar 

  13. S. A. McCarthy, D. Chen, B. S. Yang, J. J. Garcia Ramirez, H. Cherwinski, X. R. Chen, et al. (1997). Rapid phosphorylation of Ets-2 accompanies mitogen-activated protein kinase activation and the induction of heparin-binding epidermal growth factor gene expression by oncogenic Raf-1. Mol. Cell. Biol. 17:2401–2412.

    PubMed  Google Scholar 

  14. D. O. Cowley and B. J. Graves (2000). Phosphorylation represses Ets-1 DNA binding by reinforcing autoinhibition. Genes Dev. 14:366–376.

    PubMed  Google Scholar 

  15. P. Rieske and J. M. Pongubala (2001). AKT induces transcriptional activity of PU.1 through phosphorylation-mediated modifications within its transactivation domain. J. Biol. Chem. 276:8460–8468.

    PubMed  Google Scholar 

  16. L. Le Gallic, D. Sgouras, G. Beal, Jr., and G. Mavrothalassitis (1999). Transcriptional repressor ERF is a Ras/mitogenactivated protein kinase target that regulates cellular proliferation. Mol. Cell. Biol. 19:4121–4133.

    PubMed  Google Scholar 

  17. C. Ducret, S. M. Maira, A. Dierich, and B. Wasylyk (1999). The net repressor is regulated by nuclear export in response to anisomycin, UV, and heat shock. Mol. Cell. Biol. 19:7076–7087.

    PubMed  Google Scholar 

  18. R. Treisman (1996). Regulation of transcription byMAPkinase cascades. Curr. Opin. Cell. Biol. 8:205–215.

    PubMed  Google Scholar 

  19. J. M. Pongubala, C. Van Beveren, S. Nagulapalli, M. J. Klemsz, S. R. McKercher, R. A. Maki, et al. (1993). Effect of PU.1 phosphorylation on interaction with NF-EM5 and transcriptional activation. Science 259:1622–1625.

    PubMed  Google Scholar 

  20. A. Tamir, J. Howard, R. R. Higgins, Y. J. Li, L. Berger, E. Zacksenhaus, et al. (1999). Fli-1, an Ets-related transcription factor, regulates erythropoietin-induced erythroid proliferation and differentiation: evidence for direct transcriptional repression of the Rb gene during differentiation. Mol. Cell. Biol. 19:4452–4464.

    PubMed  Google Scholar 

  21. R. P. DeKoter, H. J. Lee, and H. Singh (2002). PU.1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. Immunity 16:297–309.

    PubMed  Google Scholar 

  22. E. Y. Tsai, J. V. Falvo, A. V. Tsytsykova, A. K. Barczak, A. M. Reimold, L. H. Glimcher, et al. (2000). A lipopolysaccharidespecific enhancer complex involving Ets, Elk-1, Sp1, and CREB binding protein and p300 is recruited to the tumor necrosis factor alpha promoter in vivo. Mol. Cell. Biol. 20:6084–6094.

    PubMed  Google Scholar 

  23. V. I. Sementchenko and D. K. Watson (2000). Ets target genes: Past, present and future. Oncogene 19:6533–6548.

    PubMed  Google Scholar 

  24. O. Delattre, J. Zucman, B. Plougastel, C. Desmaze, T. Melot, M. Peter, et al. (1992). Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359:162–165.

    PubMed  Google Scholar 

  25. P. H. Sorensen, S. L. Lessnick, D. Lopez-Terrada, X. F. Liu, T. J. Triche, and C. T. Denny (1994). A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETSfamily transcription factor, ERG. Nat. Genet. 6:146–151.

    PubMed  Google Scholar 

  26. I. S. Jeon, J. N. Davis, B. S. Braun, J. E. Sublett, M. F. Roussel, C. T. Denny, et al. (1995). Avariant Ewing's sarcoma translocation (7;22) fuses the EWS gene to the ETS gene ETV1. Oncogene 10:1229–1234.

    PubMed  Google Scholar 

  27. Y. Kaneko, K. Yoshida, M. Handa, Y. Toyoda, H. Nishihira, Y. Tanaka, et al. (1996). Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 15:115–121.

    PubMed  Google Scholar 

  28. F. Urano, A. Umezawa, W. Hong, H. Kikuchi, and J. Hata (1996). A novel chimera gene between EWS and E1A-F, encoding the adenovirus E1A enhancer-binding protein, in extraosseous Ewing's sarcoma. Biochem. Biophys. Res. Commun. 219:608–612.

    PubMed  Google Scholar 

  29. R. A. Bailly, R. Bosselut, J. Zucman, F. Cormier, O. Delattre, M. Roussel, et al. (1994). DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol. Cell. Biol. 14:3230–3241.

    PubMed  Google Scholar 

  30. T. R. Golub, G. F. Barker, M. Lovett, and D. G. Gilliland (1994). Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77:307–316.

    PubMed  Google Scholar 

  31. I. Panagopoulos, N. Mandahl, F. Mitelman, and P. Aman (1995). Two distinct FUS breakpoint clusters in myxoid liposarcoma and acute myeloid leukemia with the translocations t(12;16) and t(16;21). Oncogene 11:1133–1137.

    PubMed  Google Scholar 

  32. K. Shimizu, H. Ichikawa, A. Tojo, Y. Kaneko, N. Maseki, Y. Hayashi, et al. (1993). An ets-related gene, ERG, is rearranged inhumanmyeloid leukemia with t(16;21) chromosomal translocation. Proc. Natl. Acad. Sci. U. S. A. 90:10280–10284.

    PubMed  Google Scholar 

  33. A. Buijs, S. Sherr, S. van Baal, S. van Bezouw, D. van der Plas, A. Geurts vanKessel, et al. (1995). Translocation (12;22) (p13;q11) in myeloproliferative disorders results in fusion of the ETSlike TEL gene on 12p13 to the MN1 gene on 22q11. Oncogene 10:1511–1519.

    PubMed  Google Scholar 

  34. A. Buijs, L. van Rompaey, A. C. Molijn, J. N. Davis, A. C. Vertegaal, M. D. Potter, et al. (2000). TheMN1-TEL fusion protein, encoded by the translocation (12;22)(p13;q11) in myeloid leukemia, is a transcription factor with transforming activity. Mol. Cell. Biol. 20:9281–9293.

    PubMed  Google Scholar 

  35. L. Wang and S. W. Hiebert (2001). TEL contacts multiple corepressors and specifically associates with histone deacetylase-3. Oncogene 20:3716–3725.

    PubMed  Google Scholar 

  36. J. Dittmer and A. Nordheim (1998). Ets transcription factors and human disease. Biochim. Biophys. Acta 1377:F1-F11.

    PubMed  Google Scholar 

  37. C. D. Mackereth, M. Scharpf, L. N. Gentile, and L. P. McIntosh (2002). Chemical shift and secondary structure conservation of the PNT/SAM domains from the ets family of transcription factors. J. Biomol. NMR 24:71–72.

    PubMed  Google Scholar 

  38. C. Tognon, S. R. Knezevich, D. Huntsman, C. D. Roskelley, N. Melnyk, J. A. Mathers, et al. (2002). Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2:367–376.

    PubMed  Google Scholar 

  39. B. U. Mueller, T. Pabst, M. Osato, N. Asou, L. M. Johansen, M. D. Minden, et al. (2002). Heterozygous PU.1 mutations are associated with acute myeloid leukemia. Blood 100:998–1007.

    PubMed  Google Scholar 

  40. P. Behrens, M. Rothe, A. Wellmann, J. Krischler, and N. Wernert (2001). The Ets-1 transcription factor is up-regulated together with MMP 1 and MMP 9 in the stroma of pre-invasive breast cancer. J. Pathol. 194:43–50.

    PubMed  Google Scholar 

  41. B. Davidson, I. Goldberg, W. H. Gotlieb, J. Kopolovic, G. Ben-Baruch, and R. Reich (2003). PEA3 is the second Ets family transcription factor involved in tumor progression in ovarian carcinoma. Clin. Cancer Res. 9:1412–1419.

    PubMed  Google Scholar 

  42. B. Davidson, B. Risberg, I. Goldberg, J. M. Nesland, A. Berner, C. G. Trope, et al. (2001). Ets-1 mRNA expression in effusions of serous ovarian carcinoma patients is a marker of poor outcome. Am. J. Surg. Pathol. 25:1493–1500.

    PubMed  Google Scholar 

  43. C. C. Benz, R. C. O'Hagan, B. Richter, G. K. Scott, C. H. Chang, X. Xiong, et al. (1997). HER2/Neu and the Ets transcription activator PEA3 are coordinately upregulated in human breast cancer. Oncogene 15:1513–1525.

    PubMed  Google Scholar 

  44. C. H. Chung, P. S. Bernard, and C. M. Perou (2002). Molecular portraits and the family tree of cancer. Nat. Genet. 32(Suppl.):533–540.

    PubMed  Google Scholar 

  45. C. H. Chang, G. K. Scott, W. L. Kuo, X. Xiong, Y. Suzdaltseva, J. W. Park, et al. (1997). ESX: A structurally unique Ets overexpressed early during human breast tumorigenesis. Oncogene 14:1617–1622.

    PubMed  Google Scholar 

  46. R. Neve, C. H. Chang, G. K. Scott, A. Wong, R. R. Friis, N. E. Hyneset, et al. (1998). The epithelium-specific ets transcription factor ESX is associated with mammary gland development and involution. FASEB J 12:1541–1550.

    PubMed  Google Scholar 

  47. A. Ghadersohi and A. K. Sood (2001). Prostate epitheliumderived Ets transcription factor mRNAis overexpressed in human breast tumors and is a candidate breast tumor marker and a breast tumor antigen. Clin. Cancer Res. 7:2731–2738.

    PubMed  Google Scholar 

  48. M. Mitas, K. Mikhitarian, L. Hoover, M. A. Lockett, L. Kelley, A. Hill, et al. (2002). Prostate-specific Ets (PSE) factor:Anovel marker for detection of metastatic breast cancer in axillary lymph nodes. Br. J. Cancer 86:899–904.

    PubMed  Google Scholar 

  49. N. Yamada, Y. Tamai, H. Miyamoto, and M. Nozaki (2000). Cloning and expression of the mouse Pse gene encoding a novel Ets family member. Gene 241:267–274.

    PubMed  Google Scholar 

  50. M. Nozawa, K. Yomogida, N. Kanno, N. Nonomura, T. Miki, A. Okuyama, et al. (2000). Prostate-specific transcription factor hPSE is translated only in normal prostate epithelial cells. Cancer Res. 60:1348–1352.

    PubMed  Google Scholar 

  51. Y. Tsujimoto, N. Nonomura, H. Takayama, K. Yomogida, M. Nozawa, K. Nishimura, et al. (2002). Utility of immunohistochemical detection of prostate-specific Ets for the diagnosis of benign and malignant prostatic epithelial lesions. Int. J. Urol. 9:167–172.

    PubMed  Google Scholar 

  52. P. N. Span, P. Manders, J. J. Heuvel, C. M. Thomas, R. R. Bosch, L. V. Beex, et al. (2002). Expression of the transcription factor Ets-1 is an independent prognostic marker for relapse-free survival in breast cancer. Oncogene 21:8506–8509.

    PubMed  Google Scholar 

  53. J. H. Xin, A. Cowie, P. Lachance, and J. A. Hassell (1992). Molecular cloning and characterization of PEA3, a new member of the Ets oncogene family that is differentially expressed in mouse embryonic cells. Genes. Dev. 6:481–496.

    PubMed  Google Scholar 

  54. F. Higashino, K. Yoshida, Y. Fujinaga, K. Kamio, and K. Fujinaga (1993). Isolation of a cDNA encoding the adenovirus E1A enhancer binding protein: A new human member of the ets oncogene family. Nucleic Acids Res. 21:547–553.

    PubMed  Google Scholar 

  55. T. A. Brown and S. L. McKnight (1992). Specificities of protein-protein and protein-DNA interaction of GABP alpha and two newly defined ets-related proteins. Genes Dev. 6:2502–2512.

    PubMed  Google Scholar 

  56. D. Monte, J. L. Baert, M. P. Laget, P. A. Defossez, L. Coutte, H. Pelczar, et al. (1995). [Transcription factors of the PEA3 group in mammary cancer]. Ann. Endocrinol. (Paris) 56:547–551.

    Google Scholar 

  57. D. Monte, J. L. Baert, P. A. Defossez, Y. de Launoit, and D. Stehelin (1994). Molecular cloning and characterization of human ERM, a new member of the Ets family closely related to mouse PEA3 and ER81 transcription factors. Oncogene 9:1397–1406.

    PubMed  Google Scholar 

  58. D. Monte, L. Coutte, F. Dewitte, P. A. Defossez, M. Le Coniat, D. Stehelin, et al. (1996). Genomic organization of the human ERM (ETV5) gene, a PEA3 group member of ETS transcription factors. Genomics 35:236–240.

    PubMed  Google Scholar 

  59. I. S. Jeon and D. N. Shapiro (1998). Phylogenetically interrelated ETS genes, ETV1, ERM and E1A-F locate on different chromosomes. J. Korean Med. Sci. 13:355–360.

    PubMed  Google Scholar 

  60. T. Shepherd and J. A. Hassell (2001). Role of Ets transcription factors in mammary gland development and oncogenesis. J. Mammary Gland Biol. Neoplasia 6:129–140.

    PubMed  Google Scholar 

  61. Y. de Launoit, A. Chotteau-Lelievre, C. Beaudoin, L. Coutte, S. Netzer, C. Brenner, et al. (2000). The PEA3 group of ETSrelated transcription factors. Role in breast cancer metastasis. Adv. Exp. Med. Biol. 480:107–116.

    PubMed  Google Scholar 

  62. A. Greenall, N. Willingham, E. Cheung, D. S. Boam, A. D. Sharrocks (2001). DNA binding by the ETS-domain transcription factor PEA3 is regulated by intramolecular and intermolecular protein.protein interactions. J. Biol. Chem. 276:16207–16215.

    PubMed  Google Scholar 

  63. D. Monte, L. Coutte, J. L. Baert, I. Angeli, D. Stehelin, and Y. de Launoit (1995). Molecular characterization of the ets-related human transcription factor ER81. Oncogene 11:771–779.

    PubMed  Google Scholar 

  64. M. A. Laing, S. Coonrod, B. T. Hinton, J. W. Downie, R. Tozer, M. A. Rudnicki, et al. (2000). Male sexual dysfunction in mice bearing targeted mutant alleles of thePEA3ets gene. Mol. Cell. Biol. 20:9337–9345.

    PubMed  Google Scholar 

  65. A. Chotteau-Lelievre, X. Desbiens, H. Pelczar, P. A. Defossez, and Y. de Launoit (1997). Differential expression patterns of the PEA3 group transcription factors through murine embryonic development. Oncogene 15:937–952.

    PubMed  Google Scholar 

  66. A. Chotteau-Lelievre, P. Dolle, V. Peronne, L. Coutte, Y. de Launoit, and X. Desbiens (2001). Expression patterns of the Ets transcription factors from the PEA3 group during early stages of mouse development. Mech. Dev. 108:191–195.

    PubMed  Google Scholar 

  67. S. Arber, D. R. Ladle, J. H. Lin, E. Frank, and T. M. Jessell (2000). ETS gene Er81 controls the formation of functional connections between group Ia sensory afferents and motor neurons. Cell 101:485–498.

    PubMed  Google Scholar 

  68. Sakakura (1987). The Mammary Gland. Plenum Press. New York.

    Google Scholar 

  69. L. Hennighausen and G. W. Robinson (1998). Think globally, act locally: The making of a mouse mammary gland. Genes Dev. 12:449–455.

    PubMed  Google Scholar 

  70. L. Hennighausen and G. W. Robinson (2001). Signaling pathways in mammary gland development. Dev. Cell 1:467–475.

    PubMed  Google Scholar 

  71. C. W. Daniel and G. H. Smith (1999). The mammary gland: a model for development. J Mammary Gland Biol. Neoplasia 4:3–8.

    PubMed  Google Scholar 

  72. M. S. Trimble, J. H. Xin, C. T. Guy, W. J. Muller, and J. A. Hassell (1993). PEA3 is overexpressed in mouse metastatic mammary adenocarcinomas. Oncogene 8:3037–3042.

    PubMed  Google Scholar 

  73. L. R. Howe, H. C. Crawford, K. Subbaramaiah, J. A. Hassell, A. J. Dannenberg, and A. M. Brown (2001). PEA3 is upregulated in response to Wnt1 and activates the expression of cyclooxygenase-2. J. Biol. Chem. 276:20108–20115.

    PubMed  Google Scholar 

  74. T. G. Shepherd, L. Kockeritz, M. R. Szrajber, W. J. Muller, and J. A. Hassell (2001). The pea3 subfamily ets genes are required for HER2/Neu-mediated mammary oncogenesis. Curr. Biol. 11:1739–1748.

    PubMed  Google Scholar 

  75. M. Kaya, K. Yoshida, F. Higashino, T. Mitaka, S. Ishii, and K. Fujinaga (1996). A single ets-related transcription factor, E1AF, confers invasive phenotype on human cancer cells. Oncogene 12:221–227.

    PubMed  Google Scholar 

  76. K. Hida, M. Shindoh, M. Yasuda, M. Hanzawa, K. Funaoka, T. Kohgo, et al. (1997). AntisenseE1AFtransfection restrains oral cancer invasion by reducing matrix metalloproteinase activities. Am. J. Pathol. 150:2125–2132.

    PubMed  Google Scholar 

  77. L. A. Brown, A. Amores, T. F. Schilling, T. Jowett, J. L. Baert, Y. de Launoit, et al. (1998). Molecular characterization of the zebrafish PEA3 ETS-domain transcription factor. Oncogene 17:93–104.

    PubMed  Google Scholar 

  78. K. Miyoshi and L. Hennighausen (2003). beta-Catenin:Atransforming actor on many stages. Breast Cancer Res. 5:63–68.

    PubMed  Google Scholar 

  79. R. Nusse (1991). Insertional mutagenesis in mouse mammary tumorigenesis. Curr. Top. Microbiol. Immunol. 171:43–65.

    PubMed  Google Scholar 

  80. X. Xing, S. C. Wang, W. Xia, Y. Zou, R. Shao, K. Y. Kwong, et al. (2000). The ets protein PEA3 suppresses HER-2/neu overexpression and inhibits tumorigenesis. Nat. Med. 6:189–195.

    PubMed  Google Scholar 

  81. N. E. Hynes and D. F. Stern (1994). The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim. Biophys. Acta 1198:165–184.

    PubMed  Google Scholar 

  82. N. Neznanov, A. K. Man, H. Yamamoto, C. A. Hauser, R. D. Cardiff, R. G. Oshima (1999). A single targeted Ets2 allele restricts development of mammary tumors in transgenic mice. Cancer Res. 59:4242–4246.

    PubMed  Google Scholar 

  83. H. Yamamoto, M. L. Flannery, S. Kupriyanov, J. Pearce, S. R. McKercher, G. W. Henkel, et al. (1998). Defective trophoblast function in mice with a targeted mutation of Ets2. Genes Dev. 12:1315–1326.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Hassell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurpios, N.A., Sabolic, N.A., Shepherd, T.G. et al. Function of PEA3 Ets Transcription Factors in Mammary Gland Development and Oncogenesis. J Mammary Gland Biol Neoplasia 8, 177–190 (2003). https://doi.org/10.1023/A:1025948823955

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025948823955

Navigation