Photosynthetica

, Volume 41, Issue 1, pp 9–20 | Cite as

Physiological Impacts of Elevated CO2 Concentration Ranging from Molecular to Whole Plant Responses

Article

Abstract

The dynamics of the terrestrial ecosystems depend on interactions between a number of biogeochemical cycles (i.e. carbon, nutrient, and hydrological cycles) that may be modified by human actions. Conversely, terrestrial ecosystems are important components of these cycles that create the sources and sinks of important greenhouse gases (e.g. carbon dioxide, methane, nitrous oxide). Especially, carbon is exchanged naturally among these ecosystems and the atmosphere through photosynthesis, respiration, decomposition, and combustion processes. Continuous increase of atmospheric carbon dioxide (CO2) concentration has led to extensive research over the last two decades, during which more then 1 400 scientific papers describing impacts of elevated [CO2] (EC) on photosynthesis have been published. However, the degree of response is very variable, depending on species, growing conditions, mineral nutrition, and duration of CO2 enrichment. In this review, I have summarised the major physiological responses of plants, in particular of trees, to EC including molecular and primary, especially photosynthetic, physiological responses. Likewise, secondary (photosynthate translocation and plant water status) and tertiary whole plant responses including also plant to plant competition are shown.

acclimation to [CO2carbon allocation global change growth photorespiration photosynthesis respiration stomatal conductance tree physiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiken, R.M., Smucker, A.J.M.: Root system regulation of whole plant growth.-Annu. Rev. Phytopathol. 34: 325-346, 1996.Google Scholar
  2. Amthor, J.S.: Respiration in a future, higher-CO2 world: opinion.-Plant Cell Environ. 14: 13-20, 1991.Google Scholar
  3. Amthor, J.S.: Increasing atmospheric CO2 concentration, water use, and water stress: scaling up from the plant to the landscape.-In: Luo, Y., Mooney, H.A. (ed.): Carbon Dioxide and Environmental Stress. Pp. 33-59. Academic Press, San Diego 1999.Google Scholar
  4. Atkinson, C.J., Taylor, J.M.: Effects of elevated CO2 on stem growth, vessel area and hydraulic conductivity of oak and cherry seedlings.-New Phytol. 133: 617-626, 1996.Google Scholar
  5. Besford, R.T., Mousseau, M., Matteucci, G.: Biochemistry, physiology and biophysics of photosynthesis.-In: Jarvis, P.G. (ed.): European Forests and Global Change. The Likely Impacts of Rising CO2 and Temperature. Pp. 29-78. Cambridge University Press, Cambridge 1998.Google Scholar
  6. Brenner, M.L.: The role of hormones in photosynthetic partitioning and seed filling.-In: Davie, P.J. (ed.): Plant Hormones and Their Role in Plant Growth and Development. Pp. 474-493. Kluwer, Dordrecht 1987.Google Scholar
  7. Caemmerer, S. von: Biochemical Models of Leaf Photosynthesis.-CSIRO Publishing, Collingwood 2000.Google Scholar
  8. Cannell, M.G.R., Thornley, J.H.M.: Modelling the components of plant respiration: Some guiding principles.-Ann. Bot. 85: 45-54, 2000.Google Scholar
  9. Ceulemans, R.: Direct impacts of CO2 and temperature on physiological processes in trees.-In: Mohren, G.M.J., Kramer, K., Sabaté, S. (ed.): Impacts of Global Change on Tree Physiology and Forest Ecosystems. Pp. 3-14. Kluwer Academic Publishers, Dordrecht-Boston-London 1997.Google Scholar
  10. Ceulemans, R., Mousseau, M.: Effects of elevated atmospheric CO2 on woody plants.-New Phytol. 127: 425-446, 1994.Google Scholar
  11. Conroy, J.P.: Influence of elevated atmospheric CO2 concentrations on plant nutrition.-Aust. J. Bot. 40: 445-456, 1992.Google Scholar
  12. Conroy, J.P., Milham, P.J., Mazur, M., Barlow, E.W.: Growth, dry weight partitioning and wood properties of Pinus radiata D. Don after 2 years of CO2 enrichment.-Plant Cell Environ. 13: 329-337, 1990.Google Scholar
  13. Curtis, P.S., Wang, X.: A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology.-Oecologia 113: 299-313, 1998.Google Scholar
  14. DeLucia, E.H., Sasek, T.W., Strain, B.R.: Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide.-Photosynth. Res. 7: 175-184, 1985.Google Scholar
  15. Dyckmans, J., Flessa, H., Polle, A., Beese, F.: The effect of elevated [CO2] on uptake and allocation of C-13 and N-15 in beech (Fagus sylvatica L.) during leafing.-Plant Biol. 2: 113-120, 2000.Google Scholar
  16. Eamus, D., Jarvis, P.G.: The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests.-In: Begon, M., Fitter, A.H., Ford, E.D., MacFadyen, A. (ed.): Advances in Ecological Research. Pp. 1-55. Academic Press, London-Tokyo-Toronto 1989.Google Scholar
  17. Eichelmann, H., Laisk, A.: Ribulose-1,5-bisphosphate carboxylase/oxygenase content, assimilatory charge, and mesophyll conductance in leaves.-Plant Physiol. 119: 179-189, 1999.Google Scholar
  18. Farquhar, G.D., Caemmerer, S. von, Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.-Planta 149: 78-90, 1980.Google Scholar
  19. Field, C.B.: Plant physiology of the “missing” carbon sink.-Plant Physiol. 125: 25-28, 2001.Google Scholar
  20. Field, C.B., Jackson, R.B., Mooney, H.A.: Stomatal responses to increased CO2: implications from the plant to the global scale.-Plant Cell Environ. 18: 1214-1225, 1995.Google Scholar
  21. Flügge, U.-I., Heldt, H.W.: Metabolic translocators of the chloroplast envelope.-Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 129-144, 1991.Google Scholar
  22. Gielen, B., Jach, M.E., Ceulemans, R.: Effects of season, needle age, and elevated atmospheric CO2 on chlorophyll fluorescence parameters and needle nitrogen concentration in Scots pine (Pinus sylvestris).-Photosynthetica 38: 13-21, 2000.Google Scholar
  23. Gonzàlez-Meler, M.A., Ribas-Carbó, M., Siedow, J.N., Drake, B.G.: Direct inhibition of plant mitochondrial respiration by elevated CO2.-Plant Physiol. 112: 1349-1355, 1996.Google Scholar
  24. Gonzàlez-Meler, M.A., Siedow, J.N.: Direct inhibition of mitochondrial respiratory enzymes by elevated CO2: does it matter at the tissue or whole-plant level?-Tree Physiol. 19: 253-259, 1999.Google Scholar
  25. Granier, A., Biron, P., Lemoine, D.: Water balance, transpiration and canopy conductance in two beech stands.-Agr. Forest Meteorol. 100: 291-308, 2000.Google Scholar
  26. Griffin, K.L., Seemann, J.R.: Plants, CO2 and photosynthesis in the 21st century.-Chem. Biol. 3: 245-254, 1996.Google Scholar
  27. Griffin, K.L., Sims, D.A., Seemann, J.R.: Altered night-time CO2 concentration affects the growth, physiology and biochemistry of soybean.-Plant Cell Environ. 22: 91-99, 1999.Google Scholar
  28. Gunderson, C.A., Norby, R.J., Wullschleger, S.D.: Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in elevated CO2: no loss of photosynthetic enhancement.-Plant Cell Environ. 16: 797-807, 1993.Google Scholar
  29. Hardy, R.W.F., Havelka, U.D.K.: Symbiotic N2 fixation: Multifold enhancement by CO2-enrichment of field-grown soybeans.-Plant Physiol. 48: 35, 1975.Google Scholar
  30. Harley, P.C., Baldocchi, D.D.: Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. I. Leaf model parametrization.-Plant Cell Environ. 18: 1146-1156, 1995.Google Scholar
  31. Hättenschwiler, S.: Tree seedling growth in natural deep shade: functional traits related to interspecific variation in response to elevated CO2.-Oecologia 129: 31-42, 2001.Google Scholar
  32. Heath, J.: Stomata of trees growing in CO2-enriched air show reduced sensitivity to vapour pressure deficit and drought.-Plant Cell Environ. 21: 1077-1088, 1998.Google Scholar
  33. Heath, J., Kerstiens, G.: Effects of elevated CO2 on leaf gas exchange in beech and oak at two levels of nutrient supply: consequences for sensitivity to drought in beech.-Plant Cell Environ. 20: 57-67, 1997.Google Scholar
  34. Hsiao, T.C., Jackson, R.B.: Interactive effects of water stress and elevated CO2 on growth, photosynthesis, and water use efficiency.-In: Luo, Y., Mooney, H.A. (ed.): Carbon Dioxide and Environmental Stress. Pp. 3-31. Academic Press, San Diego 1999.Google Scholar
  35. Huber, S.C., Huber, J.L.A.: Role of sucrose-phosphate synthase in sucrose metabolism in leaves.-Plant Physiol. 99: 1275-1278, 1992.Google Scholar
  36. Huber, S.C., Huber, J.L., Campbell, W.M., Redinbough, M.G.: Comparative studies of the light modulation of nitrate reductase and sucrose-phosphate synthase activities in spinach leaves.-Plant Physiol. 100: 706-712, 1992.Google Scholar
  37. Idso, S.B.: The long-term response of trees to atmospheric CO2 enrichment.-Global Change Biol. 5: 493-495, 1999.Google Scholar
  38. Jach, M.E., Ceulemans, R.: Effects of elevated atmospheric CO2 on phenology, growth and crown structure of Scots pine (Pinus sylvestris) seedlings after two years of exposure in the field.-Tree Physiol. 19: 289-300, 1999.Google Scholar
  39. Jach, M.E., Ceulemans, R.: Short-versus long-term effects of elevated CO2 on night-time respiration of needles of Scots pine (Pinus sylvestris L.).-Photosynthetica 38: 57-67, 2000.Google Scholar
  40. Jacobs, T.: Why do plants cells divide?-Plant Cell 9: 1021-1029, 1997.Google Scholar
  41. Jang, J.C., Sheen, J.: Sugar sensing in higher plants.-Plant Cell 6: 1665-1679, 1994.Google Scholar
  42. Janouš, D., Dvořák, V., Opluštilová, M., Kalina, J.: Chamber effects and responses of trees in the experiment using open top chambers.-J. Plant Physiol. 148: 332-338, 1996.Google Scholar
  43. Kalina, J., Čajánek, M., Špunda, V., Marek, M.V.: Changes of the primary photosynthetic reactions of Norway spruce under elevated CO2.-In: Mohren, G.M.J., Kramer, K., Sabaté, S. (ed.): Impacts of Global Change on Tree Physiology and Forest Ecosystems. Pp. 59-66. Kluwer Academic Publishers, Dordrecht 1997.Google Scholar
  44. Kalina, J., Urban, O., Čajánek, M., Kurasová, I., Špunda, V., Marek, M.V.: Different responses of Norway spruce needles from shaded and exposed crown layers to the prolonged exposure to elevated CO2 studied by various chlorophyll a fluorescence techniques.-Photosynthetica 39: 369-376, 2001.Google Scholar
  45. Kellomäki, S., Wang, K.-Y.: Sap flow in Scots pines growing under conditions of year-round carbon dioxide enrichment and temperature elevation.-Plant Cell Environ. 21: 969-981, 1998.Google Scholar
  46. Kerstiens, G.: Shade-tolerance as a predictor of responses to elevated CO2 in trees.-Physiol. Plant. 102: 472-480, 1998.Google Scholar
  47. Kerstiens, G.: Meta-analysis of the interaction between shade-tolerance, light environment and growth response of woody species to elevated CO2.-Acta oecol. 22: 61-69, 2001.Google Scholar
  48. Kinsman, E.A., Lewis, C., Davies, M.S., Young, J.E., Francis, D., Vilhar, B., Ougham, H.J.: Elevated CO2 stimulates cells to divide in grass meristems: a differential effect in two natural populations of Dactylis glomerata.-Plant Cell Environ. 20: 1309-1316, 1997.Google Scholar
  49. Koch, K.E.: Carbohydrate-modulated gene expression in plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 509-540, 1996.Google Scholar
  50. Körner, C.: Does global increase of CO2 alter stomatal density?-Flora 181: 253-257, 1988.Google Scholar
  51. Kramer, P.J.: Carbon dioxide concentration, photosynthesis, and dry matter production.-BioScience 31: 29-33, 1981.Google Scholar
  52. Kubiske, M.E., Pregitzer, K.S.: Ecophysiological responses to simulated canopy gaps of two tree species of contrasting shade tolerance in elevated CO2.-Funct. Ecol. 11: 24-32, 1997.Google Scholar
  53. Laisk, A., Oja, V.: Dynamics of Leaf Photosynthesis: Rapid-response Measurements and their Interpretations.-SCIRO Publishing, Collingwood 1998.Google Scholar
  54. Lauber, W., Körner, C.: In situ stomatal responses to long-term CO2 enrichment in calcareous grassland plants.-Acta oecol. 18: 221-229, 1997.Google Scholar
  55. Lee, H.S.J., Overdieck, D., Jarvis, P.G.: Biomass, growth and carbon allocation.-In: Jarvis, P.G. (ed.): European Forests and Global Change. The Likely Impacts of Rising CO2 and Temperature. Pp. 126-191. Cambridge University Press, Cambridge 1998.Google Scholar
  56. Linder, S.: Chlorophyll as an indicator of nitrogen status of coniferous seedlings.-New Zeal. J. Forest Sci. 10: 166-175, 1980.Google Scholar
  57. Linder, S.: Foliar analysis for detecting and correcting nutrient imbalances in Norway spruce.-Ecol. Bull. (Copenhagen) 44: 178-190, 1995.Google Scholar
  58. Linder, S., Murray, M.: Do elevated CO2 concentrations and nutrients interact?-In: Jarvis, P.G. (ed.): European Forests and Global Change. The Likely Impacts of Rising CO2 and Temperature. Pp. 215-235. Cambridge University Press, Cambridge 1998.Google Scholar
  59. Long, S.P., Drake, B.G.: Photosynthetic CO2 assimilation and rising atmospheric CO2 concentrations.-In: Baker, N.R., Thomas, H. (ed.): Crop Photosynthesis: Spatial and Temporal Determinants. Pp. 69-103. Elsevier Science Publishers, Amsterdam 1992.Google Scholar
  60. Luo, Y.: Scaling against environmental and biological variability: general principles and a case study.-In: Luo, Y., Mooney, H.A. (ed.): Carbon Dioxide and Environmental Stress. Pp. 309-331. Academic Press, San Diego 1999.Google Scholar
  61. Luo, Y., Canadell, J., Mooney, H.A.: Interactive effects of carbon dioxide and environmental stress on plants and ecosystems: a synthesis.-In: Luo, Y., Mooney, H.A. (ed.): Carbon Dioxide and Environmental Stress. Pp. 393-408. Academic Press, San Diego 1999a.Google Scholar
  62. Luo, Y., Field, C.B., Mooney, H.A.: Predicting responses of photosynthesis and root fraction to elevated [CO2]a: Interactions among carbon, nitrogen, and growth: theoretical paper.-Plant Cell Environ. 17: 1195-1204, 1994.Google Scholar
  63. Luo, Y., Reynolds, J., Wang, Y., Wolfe, D.: A search for predictive understanding of plant responses to elevated [CO2].-Global Change Biol. 5: 143-156, 1999b.Google Scholar
  64. Makino, A., Mae, T.: Photosynthesis and plant growth at elevated levels of CO2.-Plant Cell Physiol. 40: 999-1006, 1999.Google Scholar
  65. Marek, M.V., Kalina, J., Matoušková, M.: Response of photosynthetic carbon assimilation of Norway spruce exposed to long-term elevation of CO2 concentration.-Photosynthetica 31: 209-220, 1995.Google Scholar
  66. Marek, M.V., Šprtová, M., Kalina, J.: The photosynthetic irradiance-response of Norway spruce exposed to a long-term elevation of CO2 concentration.-Photosynthetica 33: 259-268, 1997.Google Scholar
  67. Marek, M.V., Šprtová, M., Urban, O., Špunda, V.: Chlorophyll a fluorescence response of Norway spruce needles to the long-term effect of elevated CO2 in relation to their position within the canopy.-Photosynthetica 39: 437-445, 2001.Google Scholar
  68. Marek, M.V., Urban, O., Šprtová, M., Pokorný, R., Rosová, Z., Kulhavý, J.: Photosynthetic assimilation of sun versus shade Norway spruce [Picea abies (L.) Karst] needles under long-term impact of elevated CO2 concentration.-Photosynthetica 40: 259-267, 2002.Google Scholar
  69. Martin, T. Oswald, O., Graham, I.A.: Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability.-Plant Physiol. 128: 472-481, 2002.Google Scholar
  70. Medlyn, B.E., Badeck, F.-W., De Pury, D.G.G., Barton, C.V.M., Broadmeadow, M., Ceulemans, R., De Angelis, P., Forstreuter, M., Jach, M.E., Kellomäki, S., Laitat, E., Marek, M., Philippot, S., Rey, A., Strassemeyer, J., Laitinen, K., Liozon, R., Portier, B., Roberntz, P., Wang, K., Jarvis, P.G.: Efects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters.-Plant Cell Environ. 22: 1475-1495, 1999.Google Scholar
  71. Medlyn, B.E., Barton, C.V.M., Broadmeadow, M.S.J., Ceulemans, R., De Angelis, P., Forstreuter, M., Freeman, M., Jackson, S.B., Kellomäki, S., Laitat, E., Rey, A., Roberntz, P., Sigurdsson, B.D., Strassemeyer, J., Wang, K., Curtis, P.S., Jarvis, P.G.: Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis.-New Phytol. 149: 247-264, 2001.Google Scholar
  72. Mortensen, L.M.: Growth responses of some greenhouse plants to environment. VIII. Effect of CO2 on photosynthesis and growth of Norway spruce.-Meld. norg. Landbrukshøgsk. 62(10): 1-13, 1983.Google Scholar
  73. Mousseau, M., Enoch, H.Z.: Carbon dioxide enrichment reduces shoot growth in sweet chestnut seedlings (Castanea sativa Mill.).-Plant Cell Environ. 12: 927-934, 1989.Google Scholar
  74. Opluštilová, M., Dvořák, V.: Growth processes of Norway spruce in elevated CO2 concentration.-In: Mohren, G.M.J., Kramer, K., Sabaté, S. (ed.): Impacts of Global Change on Tree Physiology and Forest Ecosystems. Pp. 53-58. Kluwer Academic Publishers, Dordrecht 1997.Google Scholar
  75. Overdieck, D., Kellomäki, S., Wang, K.Y.: Do the effects of temperature and CO2 interact?-In: Jarvis, P.G. (ed.): European Forests and Global Change. The Likely Impacts of Rising CO2 and Temperature. Pp. 236-273. Cambridge University Press, Cambridge 1998.Google Scholar
  76. Paoletti, E., Gellini, R.: Stomatal density variation in beech and holm oak leaves collected over the last 200 years.-Acta oecol. 14: 173-178, 1993.Google Scholar
  77. Paoletti, E., Nourrisson, G., Garrec, J.P., Raschi, A.: Modifications of the leaf surface structures of Quercus ilex L. in open, naturally CO2-enriched environments.-Plant Cell Environ. 21: 1071-1075, 1998.Google Scholar
  78. Pataki, D.E., Oren, R., Tissue, D.T.: Elevated carbon dioxide does not affect average canopy stomatal conductance of Pinus taeda L.-Oecologia 117: 47-52, 1998.Google Scholar
  79. Pearcy, R.W., Björkman, O.: Physiological effects.-In: Lemon, E.R. (ed.): CO2 and Plants. Pp. 65-105. American Association for the Advancement of Science, Washington 1983.Google Scholar
  80. Peterson, A.G., Ball, J.T. et al.: The photosynthesis leaf nitrogen relationship at ambient and elevated carbon dioxide: a meta-analysis.-Global Change Biol. 5: 331-346, 1999.Google Scholar
  81. Pokorný, R., Šalanská, P., Janouš, D.: Growth and transpiration of Norway spruce trees under atmosphere with elevated CO2 concentration.-Ekológia (Bratislava) 20: 14-28, 2001.Google Scholar
  82. Poorter. H., Pérez-Soba, M.: The growth response of plants to elevated CO2 under non-optimal environmental conditions.-Oecologia 129: 1-20, 2001.Google Scholar
  83. Porter, M.A., Grodzinski, B.: Acclimation to high CO2 in bean. Carbonic anhydrase and ribulose bisphosphate carboxylase.-Plant Physiol. 74: 413-416, 1984.Google Scholar
  84. Portis, J.R., Jr.: Rubisco activase.-Biochim. biophys. Acta 1015: 15-28, 1990.Google Scholar
  85. Pospíšilová, J., Čatský, J.: Development of water stress under increased atmospheric CO2 concentration.-Photosynthetica 42: 1-24, 1999.Google Scholar
  86. Pritchard, S.G., Rogers, H.H., Prior, S.A., Peterson, C.M.: Elevated CO2 and plant structure: a review.-Global Change Biol. 5: 807-837, 1999.Google Scholar
  87. Priwitzer, T., Urban, O., Šprtová, M., Marek, M.V.: Chloroplastic carbon dioxide concentration of Norway spruce (Picea abies [L.] Karst.) needles relates to the position within the crown.-Photosynthetica 35: 561-571, 1998.Google Scholar
  88. Rogers, H.H., Runion, G.B., Prior, S.A., Torbert, H.A.: Response of plants to elevated atmospheric CO2: root growth, mineral nutrition, and soil carbon.-In: Luo, Y., Mooney, H.A. (ed.): Carbon Dioxide and Environmental Stress. Pp. 215-234. Academic Press, San Diego 1999.Google Scholar
  89. Ryan, M.G.: Effects of climate change on plant respiration.-Ecol. Appl. 1: 157-167, 1991.Google Scholar
  90. Sage, R.F.: A model describing the regulation of ribulose-1,5-bisphosphate carboxylase, electron transport, and triose phosphate use in response to light intensity and CO2 in C3 plants.-Plant Physiol. 94: 1728-1734, 1990.Google Scholar
  91. Sage, R.F.: Acclimation of photosynthesis to increasing CO2: the gas exchange perspective.-Photosynth. Res. 39: 351-368, 1994.Google Scholar
  92. Sage, R.F., Reid, C.D.: Photosynthetic response mechanisms to environmental change in C3 plants.-In: Wilkinson, R.E. (ed.): Plant-Environment Interactions. Pp. 413-499. M. Dekker, New York-Basel-Hong Kong 1994.Google Scholar
  93. Sage, R.F., Sharkey, T.D., Seemann, J.R.: Acclimation of photosynthesis to elevated CO2 in five C3 species.-Plant Physiol. 89: 590-596, 1989.Google Scholar
  94. Šantrůček, J., Sage, R.F.: Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album.-Aust. J. Plant Physiol. 23: 467-478, 1996.Google Scholar
  95. Saralabai, V.C., Vivekandan, M., Babu, R.S.: Plant responses to high CO2 concentration in the atmosphere.-Photosynthetica 33: 7-37, 1997.Google Scholar
  96. Sasek, T.W., DeLucia, E.H., Strain, B.R.: Reversibility of photosynthetic inhibition in cotton after long-term exposure to elevated CO2 concentrations.-Plant Physiol. 78: 619-622, 1985.Google Scholar
  97. Sasek, T.W., Strain, B.R.: Effects of carbon dioxide enrichment on the expression and size of Kudzu (Pueraria lobata) leaves.-Weed Sci. 37: 23-28, 1988.Google Scholar
  98. Scarascia-Mugnozza, G., De Angelis, P.: Is water used more efficiently?-In: Jarvis, P.G. (ed.): European Forests and Global Change. The Likely Impacts of Rising CO2 and Temperature. Pp. 192-214. Cambridge University Press, Cambridge 1998.Google Scholar
  99. Scholes, R.J., Noble, I.R.: Climate change. Storing carbon on land.-Science 294: 1012-1013, 2001.Google Scholar
  100. Sheen, J.: Feedback control of gene expression.-Photosynth. Res. 39: 427-438, 1994.Google Scholar
  101. Sicher, R.C., Bunce, J.A.: Relationship of photosynthetic acclimation to changes of Rubisco activity in field-grown winter wheat and barley during growth in elevated carbon dioxide.-Photosynth. Res. 52: 27-38, 1997.Google Scholar
  102. Sionit, N., Strain, B.R., Hellmers, H., Riechers, G.H., Jaeger, C.H.: Long-term atmospheric CO2 enrichment affects the growth and development of Liquidambar styraciflua and Pinus taeda seedlings.-Can. J. Forest Res. 15: 468-471, 1985.Google Scholar
  103. Soni, R., Carmichael, J.P., Shah, Z.H., Marray, J.A.H.: A family of cyclin D homologues from plants differently controlled by growth regulators and containing the conserved retioblastome protein interaction motif.-Plant Cell 7: 85-103, 1995.Google Scholar
  104. Spollen, W.G., Sharpe, R.E.: Spatial distribution of turgor and root growth at low water potentials.-Plant Physiol. 96: 438-443, 1991.Google Scholar
  105. Špunda, V., Kalina, J., Čajánek, M., Pavlíčková, H., Marek, M.V.: Long-term exposure of Norway spruce to elevated CO2 concentration induces changes in photosystem II mimicking an adaptation to increased irradiance.-J. Plant Physiol. 152: 413-419, 1998.Google Scholar
  106. Stitt, M.: Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells.-Plant Cell Environ. 14: 741-762, 1991.Google Scholar
  107. Stitt, M., Krapp, A.: The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background.-Plant Cell Environ. 22: 583-621, 1999.Google Scholar
  108. Stitt, M., Quick, W.P.: Photosynthetic carbon partitioning: its regulation and possibilities for manipulation.-Physiol. Plant. 77: 633-641, 1989.Google Scholar
  109. Stitt, M., Schulze, E.D.: Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology.-Plant Cell Environ. 17: 465-487, 1994.Google Scholar
  110. Strain, B.R., Thomas, R.B.: Anticipated effects of elevated CO2 and climate change on plants from Mediterranean-type ecosystems utilizing results of studies in other ecosystems.-In: Moreno, J.M., Oechel, W.W. (ed.): Anticipated Effects of a Changing Global Environment on Mediterranean-Type Ecosystems. Pp. 121-139. Springer-Verlag, New York 1995.Google Scholar
  111. Taylor, G., Ranasinghe, S., Bosac, C., Gardner, S.D.L., Ferris, R.: Elevated CO2 and plant growth: cellular mechanisms and responses of whole plants.-J. exp. Bot. 45: 1761-1774, 1994.Google Scholar
  112. Thomas, R.B., Griffin, K.L.: Direct and indirect effects of atmospheric carbon dioxide enrichment on leaf respiration of Glycine max (L.). Merr.-Plant Physiol. 104: 355-361, 1994.Google Scholar
  113. Tissue, D.T., Griffin, K.L., Thomas, R.B., Strain, B.R.: Effects of low and elevated CO2 on C3 and C4 annuals. II. Photosynthesis and leaf biochemistry.-Oecologia 101: 21-28, 1995.Google Scholar
  114. Tissue, D.T., Griffin, K.L., Turnbull, M.H., Whitehead, D.: Canopy position and needle age affect photosynthetic response in field-grown Pinus radiata after five years of exposure to elevated carbon dioxide partial pressure.-Tree Physiol. 21: 915-923, 2001.Google Scholar
  115. Tissue, D.T., Oechel, W.C.: Response of Eriophorum vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra.-Ecology 68: 401-410, 1987.Google Scholar
  116. Tognetti, R., Johnson, J.D., Michelozzi, M., Raschi, A.: Response of foliar metabolism in mature trees of Quercus pubescens and Quercus ilex to long-term elevated CO2.-Environ. exp. Bot. 39: 233-245, 1998.Google Scholar
  117. Tognetti, R., Longobucco, A., Miglietta, F., Raschi, A.: Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring.-Tree Physiol. 19: 261-270, 1999a.Google Scholar
  118. Tognetti, R., Longobucco, A., Raschi, A.: Seasonal embolism and xylem vulnerability in deciduous and evergreen Mediterranean trees influenced by proximity to a carbon dioxide spring.-Tree Physiol. 19: 271-277, 1999b.Google Scholar
  119. Tolley, L.C., Strain, B.R.: Effects of CO2 enrichment and water stress on gas exchange of Liquidambar styraciflua and Pinus taeda seedlings grown under different irradiance levels.-Oecologia 65: 166-172, 1985.Google Scholar
  120. Urban, O., Marek, M.V.: Seasonal changes of selected parameters of CO2 fixation biochemistry of Norway spruce under the long-term impact of elevated CO2.-Photosynthetica 36: 533-545, 1999.Google Scholar
  121. Urban, O., Pokorný, R., Kalina, J., Marek, M.V.: Control mechanisms of photosynthetic capacity under elevated CO2: evidence from three experiments with Norway spruce trees.-Photosynthetica 41: 69-75, 2003.Google Scholar
  122. van Oosten, J.-J., Besford, R.T.: Some relationships between the gas exchange, biochemistry and molecular biology of photosynthesis during leaf development of tomato plants after transfer to different carbon dioxide concentrations.-Plant Cell Environ. 18: 1253-1266, 1995.Google Scholar
  123. Vu, J.C.V., Allen, L.H., Jr., Bowes, G.: Leaf ultrastructure, carbohydrates and protein of soybeans grown under CO2 enrichment.-Environ. exp. Bot. 29: 141-147, 1989.Google Scholar
  124. Wang, Y.P., Rey, A., Jarvis, P.G.: Carbon balance of young birch trees grown in ambient and elevated atmospheric CO2 concentrations.-Global Change Biol. 4: 797-807, 1998.Google Scholar
  125. Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N.H., Verardo, D.J., Dokken, D.J.: Land use, land-use change, and forestry. A special report of the IPCC.-Cambridge University Press, Cambridge 2000.Google Scholar
  126. Webber, A.N., Nie, G.-Y., Long, S.P.: Acclimation of photosynthetic proteins to rising atmospheric CO2.-Photosynth. Res. 39: 413-425, 1994.Google Scholar
  127. Wingler, A., Lea, P.J., Quick, W.P., Leegood, R.C.: Photorespiration: metabolic pathways and their role in stress protection.-Philos. Trans. roy. Soc. London B 1402: 1517-1529, 2000.Google Scholar
  128. Wolfe, D.W., Gifford, R.M., Hilbert, D., Luo, Y.: Integration of photosynthetic acclimation to CO2 at the whole-plant level.-Global Change Biol. 4: 879-893, 1998.Google Scholar
  129. Woodward, F.I.: Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels.-Nature 327: 617-618, 1987.Google Scholar
  130. Woodward, F.I., Bazzaz, F.A.: The responses of stomatal density to CO2 partial pressure.-J. exp. Bot. 39: 1771-1781, 1988.Google Scholar
  131. Wullschleger, S.D., Norby, R.J., Hendrix, D.L.: Carbon exchange rates, chlorophyll content, and carbohydrate status of two forest tree species exposed to carbon dioxide enrichment.-Tree Physiol. 10: 21-31, 1992.Google Scholar
  132. Yordanov, I., Velikova, V., Tsonev, T.: Plant responses to drought, acclimation, and stress tolerance.-Photosynthetica 38: 171-186, 2000.Google Scholar
  133. Zerihun, A., Bassirirad, H.: Interspecies variation in nitrogen uptake kinetic responses of temperate forest species to elevated CO2: Potential causes and consequences.-Global Change Biol. 7: 211-222, 2001.Google Scholar
  134. Zhu, J., Talbott, L.D., Jin, X., Zeiger, E.: The stomatal response to CO2 is linked to changes in guard cell zeaxanthin.-Plant Cell Environ. 21: 813-820, 1998.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Laboratory of Ecological Physiology of Forest TreesInstitute of Landscape Ecology, Academy of Sciences of the Czech RepublicBrnoCzech Republic

Personalised recommendations