Skip to main content
Log in

Stuart vortices in a stratified mixing layer: the Holmboe model

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Asymptotic techniques are used to model the quasi-steady state vortices that have been observed in two-dimensional simulations of vortex roll-up in stratified shear layers. A time-independent nonlinear critical layer analysis is used to find a family of steady-state finite amplitude vortices in the Holmboe model of an inviscid stratified shear layer, with the vorticity inside closed streamlines based on the Stuart vortex. The vortices are compared to results of simulations and also an alternative model where the vorticity was constant inside closed streamlines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Klaassen, and W. R. Peltier, The effect of Prandtl number on the evolution and stability of Kelvin-Helmholtz billows. Geophys. Astrophys. Fluid Dyn. 32 (1985) 23–60.

    Google Scholar 

  2. G. P. Klaassen, and W. R. Peltier, The influence of stratification on secondary instability in free shear layers. J. Fluid Mech. 227 (1991) 71–106.

    Google Scholar 

  3. P. C. Patnaik, F. S. Sherman and G. M. Corcos, A numerical study of Kelvin-Helmholtz waves of finite amplitude. J. Fluid Mech. 73 (1976) 215–240.

    Google Scholar 

  4. J. Sommeria, C. Staquet and R. Robert, Final equilibrium state of a two-dimensional shear layer. J. Fluid Mech. 233 (1991) 661–689.

    Google Scholar 

  5. C. Staquet, Two-dimensional secondary instabilities in a strongly stratified shear layer. J. Fluid Mech. 296 (1995) 71–106.

    Google Scholar 

  6. L.-P. Wang and M. R. Maxey, Kinematical descriptions for mixing in stratified or homogeneous shear flows. In: J. M. Redondo and O. Métais (eds.) Mixing in Geophysical Flows Barcelona: CIMNE (1995) pp. 14–34.

    Google Scholar 

  7. H. Tanaka, Quasi-linear and non-linear interactions of finite amplitude perturbations in a stably stratified fluid with hyperbolic shear. J. Meteorol. Soc. Japan 53 (1975) 1–31.

    Google Scholar 

  8. J. T. Stuart, On finite amplitude oscillations in laminar mixing layers. J. Fluid Mech. 29 (1967) 417–440.

    Google Scholar 

  9. D. J. Benney and R. T. Bergeron, A new class of nonlinear waves in parallel flows. Stud. Appl. Math. 48 (1969) 181–204.

    Google Scholar 

  10. R. E. Davis, On the high Reynolds number flow over a wavy boundary. J. Fluid Mech. 36 (1969) 337–346.

    Google Scholar 

  11. G. K. Batchelor, On steady laminar flow with closed streamlines at large Reynolds numbers. J. Fluid Mech. 1 (1956) 177–190.

    Google Scholar 

  12. R. E. Kelly and S. A. Maslowe, The nonlinear critical layer in a slightly stratified shear layer. Stud. Appl. Math. 49 (1970) 301–332.

    Google Scholar 

  13. S. A. Maslowe, The generation of clear air turbulence by nonlinear waves. Stud. Appl. Math. 51 (1972) 1–16.

    Google Scholar 

  14. S. A. Maslowe, Finite-amplitude Kelvin-Helmholtz billows. Boundary-Layer Meteorology 5 (1973) 43–52.

    Google Scholar 

  15. S. N Brown and K. Stewartson, The evolution of the critical layer of a Rossby wave. Part II. Geophys. Astrophys. Fluid Dyn. 10 (1978) 1–18.

    Google Scholar 

  16. R. Haberman, Critical layers in parallel flows. Stud. Appl. Math. 51 (1972) 139–161.

    Google Scholar 

  17. R. Haberman, Wave-induced distortions of a slightly stratified shear flow: a nonlinear critical layer effect. J. Fluid Mech. 58 (1973) 727–735.

    Google Scholar 

  18. K. Stewartson, Theory of nonlinear stability. Fluid Dyn. Trans. (Poland) 7 (1974) 101–120.

    Google Scholar 

  19. K. Stewartson, The evolution of the critical layer of a Rossby wave. Geophys. Astrophys. Fluid Dyn. 9 (1978) 185–200.

    Google Scholar 

  20. L. M. Mack, A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J. Fluid Mech. 73 (1976) 497–520.

    Google Scholar 

  21. J. W. Murdock and K. Stewartson, Continuous spectra of the Orr-Sommerfeld equation. Phys. Fluids 20 (1978) 1404–1411.

    Google Scholar 

  22. P. B. Rhines and W. R. Young, How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133 (1983) 133–145.

    Google Scholar 

  23. J. Holmboe, Unpublished lecture notes. University of California at Los Angeles, Los Angeles CA USA (1960).

    Google Scholar 

  24. J. W. Miles, On the stability of heterogeneous shear flows. Part 2. J. Fluid Mech. 16 (1963) 209–227.

    Google Scholar 

  25. J. W. Miles, On the stability of heterogeneous shear flows. J. Fluid Mech. 10 (1961) 495–508.

    Google Scholar 

  26. G. I. Taylor, Effect of variation in density on the stability of superposed streams of fluid. Proc. R. Soc. London A132 (1931) 499–523.

    Google Scholar 

  27. R. Mallier, On disturbances to a stratified mixing layer. Stud. Appl. Math. 107 (2001) 185–206.

    Google Scholar 

  28. I. G. Shukhman and S. M. Churilov, Effect of slight stratification on the nonlinear spatial evolution of a weakly unstable wave in a free shear layer. J. Fluid Mech. 343 (1997) 197–233.

    Google Scholar 

  29. A. Barcilon and P. G. Drazin, Nonlinear waves of vorticity. Stud. Appl. Math. 106 (2001) 437–474.

    Google Scholar 

  30. R. Mallier, Stuart vortices in a stratified shear layer.I: the Garcia model. Geophys. Astrophys. Fluid Dyn. 74 (1994) 73–97.

    Google Scholar 

  31. R. Mallier, Stuart vortices on a beta-plane. Dyn. Atmosph. Oceans 22 (1995) 213–238.

    Google Scholar 

  32. T. B. Gatski, Vortex motion in a wall-bounded viscous flow. Proc. R. Soc. London A397 (1985) 397–414.

    Google Scholar 

  33. L. N. Howard, Note on a paper of John W. Miles. J. Fluid Mech. 10 (1961) 509–512.

    Google Scholar 

  34. L. N. Howard and S. A Maslowe, Stability of stratified shear flows. Boundary-Layer Meteorology 4 (1973) 511–523.

    Google Scholar 

  35. R. Mallier, Weakly Nonlinear Waves in Mixing Layers. Ph.D. Thesis. Brown University, Providence RI USA (1991) 396 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallier, R. Stuart vortices in a stratified mixing layer: the Holmboe model. Journal of Engineering Mathematics 47, 121–136 (2003). https://doi.org/10.1023/A:1025890823745

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025890823745

Navigation