Skip to main content
Log in

Alumina catalyzed reactions of amino acids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal reactions of glycine (Gly), alanine (Ala), leucine (Leu), valine (Val) and proline (Pro) adsorbed on activated alumina were studied by means of thermal analysis. In the absence of alumina, decomposition of amino acids was detected as a sharp endotherm above 200°C, whereas no thermal effects were detectable by differential thermal analysis (DTA) and differential scanning calorimetry (DSC) for amino acid/alumina mixtures. This could be explained by a continuous amino acid condensation to peptides and simultaneous absorption of formed water by alumina, the latter being gradually released at higher temperatures. Thermogravimetry (TG) and differential thermogravimetry (DTG) measurements revealed that the reactions of the amino acids adsorbed on alumina surface were spread over a wide range of temperatures. The catalysis of peptide bond formation on alumina surface at 85°C was proven directly by the identification of the reaction products, mainly dipeptides and cyclic anhydrides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Lahav, Heterogen. Chem. Rev., 1 (1994) 159.

    CAS  Google Scholar 

  2. B. M. Rode, Peptides, 20 (1999) 773.

    Article  CAS  Google Scholar 

  3. A. D. Keefe and S. L. Miller, J. Mol. Evol., 41 (1995) 693.

    Article  CAS  Google Scholar 

  4. J. Hulshof and C. Ponnamperuma, Origins of Life, 7 (1976) 197.

    Article  CAS  Google Scholar 

  5. J. Bujdák and B. M. Rode, J. Inorg. Biochem., 90 (2002) 1.

    Article  Google Scholar 

  6. V. A. Basiuk and J. Sainz-Rojas, Adv. Space Res., 27 (2001) 225.

    Article  CAS  Google Scholar 

  7. J. Bujdák and B. M. Rode, Amino Acids, 21 (2001) 281.

    Article  Google Scholar 

  8. V. R. Basiuk, T. Y. Gromovoy, V. G. Golovaty and A. M. Glukhoy, Origins Life Evol. Biosphere, 20 (1990) 483.

    Article  Google Scholar 

  9. V. A. Basiuk, R. Navarro-Gonzalez and E. V. Basiuk, Origins Life Evol. Biosphere, 28 (1998) 167.

    Article  CAS  Google Scholar 

  10. V. A. Basiuk, Adv. Space Res., 27 (2001) 335.

    Article  CAS  Google Scholar 

  11. J. G. Blank, G. H. Miller, M. J. Ahrens and R. E. Winans, Origins Life Evol. Biosphere, 31 (2001) 15.

    Article  CAS  Google Scholar 

  12. M. A. Ratcliff, E. E. Medley and P. G. Simmonds, J. Org. Chem., 39 (1974) 1481.

    Article  CAS  Google Scholar 

  13. J. Bujdák and B. M. Rode, Origins Life Evol. Biosphere, 29 (1999) 451.

    Article  Google Scholar 

  14. M. Hirokazu and H. M. Rice, Anal. Chem., 27 (1955) 336.

    Article  Google Scholar 

  15. A. Naidja and P. M. Huang, Appl. Clay Sci., 9 (1994) 265. A. Naidja and B. Siffert, Clay Miner., 24 (1989) 649.

    Article  CAS  Google Scholar 

  16. P. G. Olafsson and A. M. Bryan, Microchim. Acta, (1970) 871.

  17. F. Rodante, F. Fantauzzi and G. Catalani, Thermochim. Acta, 296 (1997) 15. F. Rodante, G. Marrosu and G. Catalani, Thermochim. Acta, 194 (1992) 197.

    Article  CAS  Google Scholar 

  18. J. Douda and V. A. Basiuk, J. Anal. Appl. Pyrolysis, 56 (2000) 113.

    Article  CAS  Google Scholar 

  19. K. Sohlberg, S. J. Pennycook and S. T. Pantelides, J. Am. Chem. Soc., 121 (1999) 7493.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bujdák, J., Rode, B.M. Alumina catalyzed reactions of amino acids. Journal of Thermal Analysis and Calorimetry 73, 797–805 (2003). https://doi.org/10.1023/A:1025882514338

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025882514338

Navigation