Skip to main content
Log in

Leaf pubescence mediates the abundance of non-prey food and the density of the predatory mite Typhlodromus pyri

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

Plants with leaves having numerous trichomes or domatia frequently harbor greater numbers of phytoseiid mites than do plant with leaves that lack these structures. We tested the hypothesis that this pattern occurs, in part, with Typhlodromus pyri because trichomes increase the capture of pollen or fungal spores that serve as alternative food. Using a common garden orchard, we found that apple varieties with trichome-rich leaves had 2–3 times more pollen and fungal spores compared to varieties with trichome-sparse leaves. We also studied the effects of leaf trichome density and pollen augmentation on T. pyri abundance to test the hypothesis that leaf trichomes mediate pollen and fungal spore capture and retention and thereby influence phytoseiid numbers. Cattail pollen (Typha sp.) was applied weekly to mature ‘McIntosh’ and ‘Red Delicious’ trees grown in an orchard and, in a separate experiment, to potted trees of the same varieties. ‘McIntosh’ trees have leaves with many trichomes whereas leaves on the ‘Red Delicious’ trees have roughly half as many trichomes. With both field-grown and potted trees, adding cattail pollen to ‘Red Delicious’ trees increased T. pyri numbers compared to ‘Red Delicious’ trees without pollen augmentation. In contrast, cattail pollen augmentation had no effect on T. pyri populations on ‘McIntosh’ trees. Augmentation with cattail pollen most likely supplemented a lower supply of naturally available alternative food on ‘Red Delicous’ leaves and thereby enhanced predator abundance. These studies indicate that larger populations of T. pyri on pubescent plants are due, in part, to the increased capture and retention of pollen and fungal spores that serve as alternative foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addison J.A., Hardman J.M. and Walde S.J. 2000. Pollen availability for predaceous mites on apple: spatial and temporal heterogeneity. Exp. Appl. Acarol. 24: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain A.C. 1975. The movement of plant particles in plant communities. In: Monteith J.L. (ed.), Vegetation and the Atmosphere. Academic Press, New York, pp. 155–204.

    Google Scholar 

  • Chant D.A. 1959. Phytoseiid mites (Acarina: Phytoseiidae). Part I. Bionomics of seven species in southeastern England. Can. Entomol. 91 Suppl. 12: 5–44.

    Google Scholar 

  • Downing R.S. and Moilliet T.K. 1967. Relative densities of predaceous and phytophagous mites on three varieties of apple trees. Can. Entomol. 99: 738–741.

    Article  Google Scholar 

  • Duso C. and Camporese P. 1991. Developmental times and oviposition rates of predatory mites Typhlodromus pyri and Amblyseius andersoni (Acari: Phytoseiidae) reared on different foods. Exp. Appl. Acarol. 13: 117–128.

    Article  Google Scholar 

  • Duso C. and Vettorazzo E. 1999. Mite population dynamics on different grape varieties with or without phytoseiids released (Acari: Phytoseiidae). Exp. Appl. Acarol. 23: 741–763.

    Article  PubMed  CAS  Google Scholar 

  • Grafton-Cardwell E.E. and Ouyang Y. 1995. Augmentation of Euseius tularensis (Acari: Phytoseiidae) in citrus. Ann. Entomol. Soc. Am. 24: 738–747.

    Google Scholar 

  • Grafton-Cardwell E.E., Ouyang Y.L. and Bugg R.L. 1999. Leguminous cover crops to enhance population development of Euseius tularensis (Acari: Phytoseiidae) in citrus. Biol. Control 16: 73–80.

    Article  Google Scholar 

  • Grostal P. and O'Dowd D.J. 1994. Plants, mites and mutualism: leaf domatia and the abundance and reproduction of mites on Viburnum tinus (Caprifoliaceae). Oecologia 97: 308–315.

    Google Scholar 

  • Karban R., English-Loeb G., Walker M.A. and Thaler J. 1995. Abundance of phytoseiid mites on Vitis species: effects of leaf hairs, domatia, prey abundance and plant phylogeny. Exp. Appl. Acarol. 19: 189–197.

    Article  Google Scholar 

  • Kennett C.E., Flaherty D.L. and Hoffmann R.W. 1979. Effect of wind-borne pollens in the population dynamics of Amblyseius hibisci (Acari: Phytoseiidae). Entomophaga 24: 83–98.

    Article  Google Scholar 

  • McMurtry J.A. and Croft B.A. 1997. Life-styles of phytoseiid mites and their roles in biological control. Annu. Rev. Entomol. 42: 291–321.

    Article  PubMed  CAS  Google Scholar 

  • McMurtry J.A. and Johnson H.G. 1965. Some factors influencing the abundance of the predaceous mite Amblyseius hibisci in Southern California (Acarina: Phytoseiidae). Ann. Entomol. Soc. Am. 58: 49–56.

    Google Scholar 

  • Norton A., English-Loeb G. and Belden E. 2001. Host plant manipulation of natural enemies: Leaf domatia protect beneficial mites from insect predators. Oecologia 126: 535–542.

    Article  Google Scholar 

  • Nyrop J.P., English-Loeb G. and Roda A.L. 1998. Conservation biological control of spider mites in perennial cropping systems. In: Barbosa P. (ed.), Conservation of Natural Enemies of Pests. Academic Press, New York, pp. 307–33.

    Google Scholar 

  • Ouyang Y., Grafton-Cardwell E.E. and Bugg L.L. 1992. Effects of various pollens on development, survivorship and reproduction of Euseius lularensis (Acari: Phytoseiidae). Environ. Entomol. 21: 1371–1376.

    Google Scholar 

  • Overmeer W.P.J. 1981. Alternative prey and other food resources. In: Helle W. and Sabelis M.W. (eds), Spider Mites. Their Biology, Natural Enemies and Control. Elsevier, Amsterdam, pp. 131–140.

    Google Scholar 

  • Overmeer W.P.J. and van Zon A.Q. 1984. The preference of Amblyseius potentillae (Garman) (Acarina: Phytoseiidae) for certain plant substrates. In: Griffiths D.A. and Bowman C. (eds), Acarology VI. Horwood, Chichester, pp. 591–596.

    Google Scholar 

  • Rasmy A.H. and El-Banhawy E.M. 1974. Behaviour and bionomics of the predatory mite, Phytoseius plumifer (Acarina: Phytoseiidae) as affected by physical surface features of host plants. Entomophaga 19: 255–257.

    Article  Google Scholar 

  • Roda A.L., Nyrop J.P., Dicke M. and English-Loeb G. 2000. Trichomes and spider mite webbing protect predatory mite eggs from intraguild predation. Oecologia. 125: 428–435.

    Article  Google Scholar 

  • Roda A., Nyrop J., English-Loeb G. and Dicke M. 2001. Leaf pubescence nad two-spotted spider mite webbing influence phytoseiid behavior and population density. Oecologia 129: 551–560.

    Google Scholar 

  • StataCorp. 1999. Stata Statistical Software: Release 6.0. Stata Corporation, College Station.

    Google Scholar 

  • Tanigoshi L.K., Mégevand B. and Yaninek J.S. 1993. Non-prey food for subsistence of Amblyseius idaeus (Acari: Phytoseiidae) on cassava in Africa. Exp. Appl. Acarol. 17: 91–96.

    Google Scholar 

  • Tauber H. 1967. Investigations of the mode of pollen transfer in forested areas. Rev. Palaeobotan. Palynol. 3: 277–286.

    Article  Google Scholar 

  • von Engel R. and Ohnesorge B. 1994a. Die Rolle von Ersatznahrung und Mikroklima im System Typhlodromus pyri Scheuten (Acari, Phytoseiidae)-Panonychus ulmi Koch (Acari, Tetranychidae) auf Weinreben. I. Untersuchungen im Labor. J. App. Ent. 118: 129–150.

    Article  Google Scholar 

  • von Engel R. and Ohnesorge B. 1994b. Die Rolle von Ersatznahrung und Mikroklima im System Typhlodromus pyri Scheuten (Acari, Phytoseiidae)-Panonychus ulmi Koch (Acari, Tetranychidae) auf Weinreben. II. Freilandversuche. J. App. Ent. 118: 224–238.

    Google Scholar 

  • Walde S.J., Nyrop J.P. and Hardman J.M. 1992. Dynamics of Panonychus ulmi and Typhlodromus pyri: factors contributing to persistence. Exp. Appl. Acarol. 14: 261–291.

    Article  Google Scholar 

  • Walter D.E. 1996. Living on leaves: mites, tomenta, and leaf domatia. Annu. Rev. Entomol. 41: 101–114.

    Article  PubMed  CAS  Google Scholar 

  • Wei Q.C. and Walde S.J. 1997. The functional response of Typhlodromus pyri to its prey, Panonychus ulmi: the effect of pollen. Exp. Appl. Acarol. 21: 677–684.

    Article  Google Scholar 

  • Yue B. and Tsai J.H. 1996. Development, survivorship, and reproduction of Amblyseius largoensis (Acari: Phytoseiidae) on selected plant pollens and temperatures. Environ. Entomol. 25: 488–494.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Nyrop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roda, A., Nyrop, J. & English-Loeb, G. Leaf pubescence mediates the abundance of non-prey food and the density of the predatory mite Typhlodromus pyri . Exp Appl Acarol 29, 193–211 (2003). https://doi.org/10.1023/A:1025874722092

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025874722092

Navigation