Skip to main content
Log in

A Model of the Sevastopol'skaya Bay. Reproduction of the Vertical Structure of Temperature and Salinity Fields in 1997–1999

  • Published:
Physical Oceanography

Abstract

We discuss the results of a numerical experiment carried out within the framework of the most complete one-dimensional (integrated over the horizontal coordinates) version of the quasiisopycnic multilayer model taking into account the processes of diapycnic mass, heat, and salt exchange and the diffusion coefficients chosen according to the theory of double diffusion. The indicated experiment reproduces the vertical thermohaline structure of waters in the Sevastopol'skaya Bay and its variability in 1997–1999. For numerical computations, we use the actual data of meteorological observations and measurements of the discharge of the river Chernaya and the sea level. The comparison of the numerical results with the data of monthly hydrological surveys reveals their good agreement (not only qualitative but also quantitative).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. I. Ovsyanyi, R. B. Kemp, L. N. Repetin, et al., “Hydrological and hydrochemical situation in the Sevastopol'skaya Bay under the conditions of anthropogenic influence (according to the data of observations in 1998-1999),” in: Ecological Safety of the Coastal and Shelf Zones and Complex Utilization of the Shelf Resources [in Russian], Marine Hydrophysical Institute, Ukrainian Academy of Sciences, Sevastopol (2000), pp. 79-103.

    Google Scholar 

  2. L. N. Repetin, A. D. Gordina, E. V. Pavlova, et al., “Influence of oceanographic factors on the ecological state of the Sevastopol'skaya Bay (Black Sea),” Morsk. Gidrofiz. Zh., No. 2, 66-80 (2003).

    Google Scholar 

  3. É. N. Mikhailova and N. B. Shapiro, “Quasiisopycnic multilayer model of large-scale oceanic circulation,” Morsk. Gidrofiz. Zh., No. 4, 3-14 (1992).

    Google Scholar 

  4. N. B. Shapiro, “Formation of the Black-Sea circulation with regard for the stochasticity of wind stresses,” Morsk. Gidrofiz. Zh., No. 6, 26-42 (1998).

    Google Scholar 

  5. N. B. Shapiro and É. N. Mikhailova, “Parametrization of diapycnic exchange in the quasiisopycnic model of the ocean,” in: Ecological Safety of the Coastal and Shelf Zones and Complex Utilization of the Shelf Resources [in Russian], Marine Hydrophysical Institute, Ukrainian Academy of Sciences, Sevastopol (2001), pp. 31-47.

    Google Scholar 

  6. V. A. Ivanov, S. P. Lyubartseva, É. N. Mikhailova, et al., “A model of the Dead Sea. Simulation of the variability of thermohaline structure of waters in 1992-2000,” Morsk. Gidrofiz. Zh., No. 5, 3-24 (2002).

    Google Scholar 

  7. A. Ivanoff, “Absorption of solar energy in the ocean,” in: Modeling and Prediction of the Upper Layers of the Ocean [Russian translation], Gidrometeoizdat, Leningrad (1979), pp. 64-90.

    Google Scholar 

  8. R. L. Haney, “Surface thermal boundary condition for ocean circulation models,” J. Phys. Oceanogr., No. 4, 241-248 (1971).

    Google Scholar 

  9. S. Hellerman and M. Rosenstein, “Normal monthly wind stress over the world ocean with error estimates,” J. Phys. Oceanogr., No. 7, 1093-1103 (1983).

    Google Scholar 

  10. P. P. Niiler and E. B. Kraus, “One-dimensional models of the upper layer of the ocean,” in: Modeling and Prediction of the Upper Layers of the Ocean [Russian translation], Gidrometeoizdat, Leningrad (1979), pp. 175-208.

    Google Scholar 

  11. E. Tziperman, “On the role of interior mixing and air-sea fluxes in determining the stratification and circulation of the oceans,” J. Phys. Oceanogr., No. 4, 680-693 (1986).

    Google Scholar 

  12. D. Hu, “The computation of diapycnal diffusive and advective scalar fluxes in multilayer isopycnic-coordinate ocean models,” Mon. Weather Rev., No. 6, 1834-1851 (1996).

    Google Scholar 

  13. J. Zhang, R. W. Schmitt, and R. X. Huang, “Sensitivity of the GFDL modular ocean model to parametrization of double-diffusive processes,” Mon. Weather Rev., No. 4, 589-605 (1998).

    Google Scholar 

  14. W. J. Marryfield, G. Holloway, and A. E. Gargett, “A global ocean model with double-diffusive mixing,” J. Phys. Oceanogr., No. 6, 1124-1142 (1999).

    Google Scholar 

  15. N. A. Timofeev, Radiation Conditions in the Oceans [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  16. K. Ya. Kondrat'ev, Radiant Solar Energy [in Russian], Gidrometeoizdat, Leningrad (1954).

    Google Scholar 

  17. A. Ivanoff, Introduction à L'océanographie. Propriétés Physiques et Chimiques des Eaux de Mer, Librairie Vuibert, Paris (1975).

    Google Scholar 

  18. N. A. Timofeev and A. V. Yurovskii, “On the correlations between radiation and meteorological parameters in the ocean-atmosphere system,” Morsk. Gidrofiz. Zh., No. 2, 61-73 (2000).

    Google Scholar 

  19. A. A. Pivovarov, Thermal Conditions of the Sea [in Russian], Izd. MGU, Moscow (1979).

    Google Scholar 

  20. R. Shapiro, “The use of linear filtering as a parametrization of atmospheric diffusion,” J. Atmosph. Sci., No. 4, 523-531 (1971).

    Google Scholar 

  21. N. B. Shapiro and S. A. Yushchenko, “Modeling of wind-induced currents in the Sevastopol bays,” Morsk. Gidrofiz. Zh., No. 1, 42-57 (1999).

    Google Scholar 

  22. É. N. Al'tman, I. F. Gertman, and Z. A. Golubeva, Climatic Fields of Salinity and Temperature of Seawater in the Black Sea [in Russian], SO GOIN, Sevastopol (1987).

    Google Scholar 

  23. N. G. Khorolich, “Numerical analysis of the water exchange between a shallow-water gulf (bay) and the open sea,” in: Trudy GOIN, Issue 168,113-118 (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, V.A., Mikhailova, É.N., Repetin, L.N. et al. A Model of the Sevastopol'skaya Bay. Reproduction of the Vertical Structure of Temperature and Salinity Fields in 1997–1999. Physical Oceanography 13, 201–222 (2003). https://doi.org/10.1023/A:1025850016768

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025850016768

Keywords

Navigation