Skip to main content
Log in

The Pressure of Ricci Curvature

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let (M n,g) be a closed Riemannian manifold and let κ0 be any positive upper bound for the sectional curvature. We prove that

$$P\left( {\frac{{r_g }}{{2\sqrt {\kappa _0 } }}} \right) \leqslant \frac{{n - 1}}{2}\sqrt {\kappa _0 } ,$$

where P(f) stands for the topological pressure of a function f on the unit sphere bundle SM and r g(v) is the Ricci curvature in the direction of v ∈ SM. This result gives rise to several estimates for the various entropies of the geodesic flow which in turn have several consequences. One of them is entropy rigidity for those metrics in a hyperbolic manifold whose normalized total scalar curvature is bigger than that of the hyperbolic metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballmann, W. and Wojtkowski, M.: An estimate for the measure-theoretic entropy of geodesic flows, Ergodic Theory Dynam. Systems 9 (1989), 271–279.

    Google Scholar 

  2. Besson, G., Courtois, G. and Gallot, S.: Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal. 5 (1995), 731–799.

    Google Scholar 

  3. Flaminio, L.: Local entropy rigidity for hyperbolic manifolds, Comm. Anal. Geom. 3 (1995), 555–596.

    Google Scholar 

  4. Freire, A. and Manñé, R.: On the entropy of the geodesic flow in manifolds without conjugate points, Invent. Math. 69 (1982), 375–392.

    Google Scholar 

  5. Katok, A.: Entropy and closed geodesics, Ergodic Theory Dynam. Systems 2 (1982), 339–365.

    Google Scholar 

  6. Knieper, G.: A second derivative of the Liouville entropy at spaces of constant negative curvature, Ergodic Theory Dynam. Systems 17 (1997), 1131–1135.

    Google Scholar 

  7. Manning, A.: More topological entropy for geodesic flows, In: D. Rand and L. S. Young (eds.), Dynamical Systems and Turbulence (Warwick 1980) Lecture Notes in Math. 898, Springer, New York, 1981, pp. 243–249.

    Google Scholar 

  8. Osserman, R. and Sarnak, P.: A new curvature invariant and entropy of geodesic flows, Invent. Math. 77 (1984), 455–462.

    Google Scholar 

  9. Paternain, G. P. and Petean, J.: Einstein manifolds of non-negative curvature and entropy, Math. Res. Lett. 7 (2000), 503–515.

    Google Scholar 

  10. Ruelle, D.: An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat. 9 (1978), 83–87.

    Google Scholar 

  11. Walters, P.: An Introduction to Ergodic Theory, Grad. Texts in Math., Springer-Verlag, New York, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paternain, G.P., Petean, J. The Pressure of Ricci Curvature. Geometriae Dedicata 100, 93–102 (2003). https://doi.org/10.1023/A:1025842932050

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025842932050

Navigation