Skip to main content
Log in

Detection of nano-second internal motion and determination of overall tumbling times independent of the time scale of internal motion in proteins from NMR relaxation data

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The usual analysis of 15N relaxation data of proteins is straightforward as long as the assumption can be made that the backbone of most residues only undergoes fast (ps), small amplitude internal motions. If this assumption cannot be made, as for example for proteins which undergo domain motions or for unfolded or partially folded proteins, one needs a method to establish for each residue whether it undergoes fast (ps) or slow (ns) internal motion. Even then it is impossible to determine the correct overall tumbling time, τm 0, via the usual method from the ratio of the longitudinal and transverse relaxation times, if the majority of residues do not undergo fast, small amplitude internal motions. The latter problem is solved when τm 0 can be determined independent of the time scale, τi, or the amplitude, S2, of the internal motion. We propose a new protocol, called PINATA, for analyzing 15N relaxation data acquired at minimally two field strengths, where no a priori assumption about time scales or amplitude of internal motions needs to be made, and overall tumbling can either be isotropic or anisotropic. The protocol involves four steps. First, for each residue, it is detected whether it undergoes ps- or ns-internal motion, via the combination of the ratio of the longitudinal relaxation time at two fields and the hetero-nuclear NOE. Second, for each residue τm 0 and the exchange broadening, Rex, are iteratively determined. The accuracy of the determination of τm 0 is ca. ±0.5 ns and of Rex ca ± 0.7 s−1, when the relaxation data are of good quality and τm 0>5 ns, S2>0.3, and τi<≈3 ns. Third, given τm 0 and Rex, step 1 is repeated to iteratively improve on the internal motion and obtain better estimates of the internal parameter values. Fourth, final time scales and amplitudes for internal motions are determined via grid search based fitting and χ2-analysis. The protocol was successfully tested on synthetic and experimental data sets. The synthetic dataset mimics internal motions on either fast or slow time scales, or a combination of both, of either small- or large amplitude, superimposed onto anisotropic overall motion. The procedures are incorporated into MATLAB scripts, which are available on request.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam, A. (1961) The Principles of Nuclear Magnetism, Clarendon Press, Oxford.

    Google Scholar 

  • Baber, J.L., Szabo, A. and Tjandra, N. (2001) J. Am. Chem. Soc., 123, 3953-3959.

    Google Scholar 

  • Bevington, P.R. (1969) Data Reduction and Error Analysis, McGraw-Hill Book Co., New York, NY.

    Google Scholar 

  • Canet, D., Barthe, P., Mutzenhardt, P. and Roumestrand, C. (2001) J. Am. Chem. Soc., 123, 4567-4576.

    Google Scholar 

  • Clore, G.M., Driscoll, P.C., Wingfield, P.T. and Gronenborn, A.M. (1990a) Biochemistry, 29, 7387-7401.

    Google Scholar 

  • Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990b) J. Am. Chem. Soc., 112, 4989-4991.

    Google Scholar 

  • Clore, G.M., Gronenborn, A.M., Szabo, A. and Tjandra, N. (1998) J. Am. Chem. Soc., 120, 4889-4890.

    Google Scholar 

  • Dyson, H.J. and Wright, P.E. (1998) Nat. Struct. Biol., 5, 499-503.

    Google Scholar 

  • Farrow, N.A., Muhandiram, D.R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay, L.E. (1994) Biochemistry, 33, 5984-6003.

    Google Scholar 

  • Farrow, N.A., Zhang, O.W., FormanKay, J.D. and Kay, L.E. (1997) Biochemistry, 36, 2390-2402.

    Google Scholar 

  • Farrow, N.A., Zhang, O.W., Szabo, A., Torchia, D.A. and Kay, L.E. (1995) J. Biomol. NMR, 6, 153-162.

    Google Scholar 

  • Fischer, M.W.F., Majumdar, A. and Zuiderweg, E.R.P. (1998) Prog. Nucl. Magn. Reson. Spectrosc., 33, 207-272.

    Google Scholar 

  • Fushman, D., Tjandra, N. and Cowburn, D. (1998) J Am. Chem. Soc., 120, 10947-10952.

    Google Scholar 

  • Fushman, D., Tjandra, N. and Cowburn, D. (1999) J. Am. Chem. Soc., 121, 8577-8582.

    Google Scholar 

  • Humphrey, W., Dalke, A. and Schulten, K. (1996) J. Mol. Graphics, 14, 33-38.

    Google Scholar 

  • Ishima, R. and Nagayama, K. (1995a) Biochemistry, 34, 3162-3171.

    Google Scholar 

  • Ishima, R. and Nagayama, K. (1995b) J. Magn. Reson., B108, 73-76.

    Google Scholar 

  • Ishima, R. and Torchia, D.A. (2000) Nat. Struct. Biol., 7, 740-743.

    Google Scholar 

  • Ishima, R., Yamasaki, K. and Nagayama, K. (1995) J. Biomol. NMR, 6, 423-426.

    Google Scholar 

  • Jin, D.Q., Andrec, M., Montelione, G.T. and Levy, R.M. (1998) J. Biomol. NMR, 12, 471-492.

    Google Scholar 

  • Kay, L.E. (1998) Nat. Struct. Biol., 5, 513-517.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972-8979.

    Google Scholar 

  • Korzhnev, D.M., Billeter, M., Arseniev, A.S. and Orekhov, V.Y. (2001) Prog. Nucl. Magn. Reson. Spectrosc., 38, 197-266.

    Google Scholar 

  • Korzhnev, D.M., Orekhov, V.Y. and Arseniev, A.S. (1997) J. Magn. Reson., 127, 184-191.

    Google Scholar 

  • Larsson, G., Schleucher, J., Onions, J., Hermann, S., Grundström, T. and Wijmenga, S.S. (2003) J. Mol. Biol., in press.

  • Lee, A.L. and Wand, A.J. (1999) J. Biomol. NMR, 13, 101-112.

    Google Scholar 

  • Lefevre, J.F., Dayie, K.T., Peng, J.W. and Wagner, G. (1996) Biochemistry, 35, 2674-2686.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546-4559.

    Google Scholar 

  • Loria, J.P., Rance, M. and Palmer, A.G. (1999) J. Am. Chem. Soc., 121, 2331-2332.

    Google Scholar 

  • Mandel, A.M., Akke, M. and Palmer, A.G. (1995) J. Mol. Biol., 246, 144-163.

    Google Scholar 

  • Orekhov, V.Y., Nolde, D.E., Golovanov, A.P. and Arseniev, A.S. (1996) Appl. Magn. Reson., 9, 581-588.

    Google Scholar 

  • Papavoine, C.H.M., Christiaans, B.E.C., Folmer, R.H.A., Konings, R.N.H. and Hilbers, C.W. (1998) J. Mol. Biol., 282, 401-419.

    Google Scholar 

  • Papavoine, C.H.M., Remerowski, M.L., Horstink, L.M., Konings, R.N.H., Hilbers, C.W. and vandeVen, F.J.M. (1997) Biochemistry, 36, 4015-4026.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1995) Biochemistry, 34, 16733-16752.

    Google Scholar 

  • Renner, C. and Holak, T.A. (2000) J. Magn. Reson., 145, 192-200.

    Google Scholar 

  • Schurr, J.M., Babcock, H.P. and Fujimoto, B.S. (1994) J. Magn. Reson., B105, 211-224.

    Google Scholar 

  • Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995) J. Am. Chem. Soc., 117, 12562-12566.

    Google Scholar 

  • Tjandra, N., Wingfield, P.T., Stahl, S. and Bax, A. (1996) J. Biomol. NMR, 8, 273-284.

    Google Scholar 

  • Tugarinov, V., Liang, Z., Shapiro, Y.E., Freed, J.H. and Meirovitch, E. (2001) J. Am. Chem. Soc., 123, 3055-3063.

    Google Scholar 

  • Viles, J.H., Duggan, B.M., Zaborowski, E., Schwarzinger, S., Huntly, J.J.A., Kroon, G.J.A., Dyson, H.J. and Wright, P.E. (2001) J. Biomol. NMR, 21, 1-9.

    Google Scholar 

  • Vis, H., Vorgias, C.E., Wilson, K.S., Kaptein, R. and Boelens, R. (1998) J. Biomol. NMR, 11, 265-277.

    Google Scholar 

  • Woessner, D.E. (1962) J. Chem. Phys., 37, 647-654.

    Google Scholar 

  • Wright, P.E. and Dyson, H.J. (1999) J. Mol. Biol., 293, 321-331.

    Google Scholar 

  • Zdunek, J., Martinez, G., Schleucher, J., Ippel, H.J., Lycksell, P.-O., Yin, Y., Nilsson, S., Shen, Y., Olivecrona, G. and Wijmenga, S.S. (2003) Biochemistry, 42, 1872-1889.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sybren S. Wijmenga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsson, G., Martinez, G., Schleucher, J. et al. Detection of nano-second internal motion and determination of overall tumbling times independent of the time scale of internal motion in proteins from NMR relaxation data. J Biomol NMR 27, 291–312 (2003). https://doi.org/10.1023/A:1025836018993

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025836018993

Navigation