Skip to main content
Log in

Kinetic method by using calorimetry to mechanism of epoxy-amine cure reaction

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A Mangelsdorf's approach to modeling the epoxy-amine cure kinetics has been developed. Analysis of the data by means of Mangelsdorf's approach makes it possible not only to determine the reaction rate constant and the heat of epoxy ring opening, but also to elucidate the reaction mechanism. However, to model the kinetic curves obtained by the calorimetric method for the complicated reaction should be derived an equation expressing the rate of change of the heat with time, as a function of the reaction rate and the extent of conversion. In a detailed examination the thermokinetic data, we found that glassy state transition is kinetically feasible. Using data available in literature, the kinetic model for epoxy-amine cure reaction was developed. Our treatment of glass formation is based on the picture of the reaction system as a miscible mixture of two structurally different liquids. This approach is similar to that presented by Bendler and Shlesinger as a Two-Fluid model. In the application of this model to reaction kinetics, we believe the explanation of glass structure formation lies in the splitting of the homogeneous mixture into two liquid phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Horie, H. Hiura, M. Sawada, I. Mita and H. Kambe, J. Polym. Sci., Chem Ed., 8 (1970) 1357.

    Article  CAS  Google Scholar 

  2. O. B. Salamatina, R. M. Vinnik, S. A. Artemenko, S. N. Rudnev, E. F. Oleinik and N. S. Enikolopyan, Vysokomol. Soed., 23A (1981) 2360.

    Google Scholar 

  3. E. F. Oleinik, Adv. Polym. Sci., 80 (1986) 49.

    CAS  Google Scholar 

  4. R. M. Vinnik and E. A. Miroshnichenko, Khimich. Phyzika, 12 (1986) 1668.

    Google Scholar 

  5. P. C. Mangelsdorf, J. Appl. Phys., 30 (1959) 443.

    Article  Google Scholar 

  6. G. W. Smith, Thermochim. Acta, 112 (1987) 289.

    Article  CAS  Google Scholar 

  7. V. V. Evreinov and S. G. Entelis, Kinetika i Kataliz, 6 (1965) 922.

    CAS  Google Scholar 

  8. V. P. Grigor'eva, E. F. Vainshtein, S. Y. Baturin and S. G. Entelis, Zh. Fiz. Khimii. 46 (1972) 2004.

    Google Scholar 

  9. I. T. Smith, Polymer, 2 (1961) 95.

    Article  CAS  Google Scholar 

  10. V. L. Zvetkov, Polymer, 43 (2002) 1089.

    Google Scholar 

  11. K. A. Connors, Chemical Kinetics. The Study of Reaction Rates in Solution, VCH Publishers Inc., New York 1990, p. 480.

    Google Scholar 

  12. R. M. Vinnik, Zavodskaya Laboratoriya, 52 (1986) 221.

    Google Scholar 

  13. N. S. Isaacs and R. E. Parker, J. Chem. Soc., (1960) 3497.

  14. J. K. Addy, R.M. Laird and R. E. Parker, J. Chem. Soc., (1961) 1708.

  15. R. M. Laird and R. E. Parker, J. Chem. Soc., (1961) 4227.

  16. N. S. Kogarko, V. A. Topolkaraev, G. M. Trofimova, V. V. Ivanov, A. A. Berlin, D. D. Novikov and N. S. Enikolopyan, Vysokomol. Soedin., A20 (1978) 756.

    Google Scholar 

  17. S. Sourour and M. R. Kamal, Thermochim. Acta, 4 (1976) 41.

    Article  Google Scholar 

  18. H. Kanno, K. Shimada and T. Katoh, J. Phys. Chem., 93 (1989) 4981.

    Article  CAS  Google Scholar 

  19. J. Sutter and C. A. Angell, J. Phys. Chem., 75 (1971) 1826.

    Article  Google Scholar 

  20. J. T. Bendler and M. F. Shlesinger, J. Phys. Chem., 96 (1992) 3970.

    Article  CAS  Google Scholar 

  21. H. Scher, M. F. Shlesinger and J. T. Bendler, PHYSICS TODAY, (Jan. 1991) 26.

  22. M. Faetti, M. Giordano, D. Leporini and L. Pardi, Macromolec., 32 (1999) 8776.

    Google Scholar 

  23. I. J. van den Dries, D. van Dusschoten and M. A. Hemminga, J. Phys. Chem., B102 (1998) 10483.

    Google Scholar 

  24. S. Glastone, K. J. Laidler and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York 1941, p. 583.

    Google Scholar 

  25. G. S. Hammond, J. Am. Chem. Soc., 77 (1955) 334.

    Article  CAS  Google Scholar 

  26. M. I. Vinnik, Nobel Symposium V, 1967, p. 225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinnik, R.M., Roznyatovsky, V.A. Kinetic method by using calorimetry to mechanism of epoxy-amine cure reaction. Journal of Thermal Analysis and Calorimetry 73, 807–817 (2003). https://doi.org/10.1023/A:1025834631176

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025834631176

Navigation