Skip to main content
Log in

The C4 pathway: an efficient CO2 pump

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The C4 pathway is a complex combination of both biochemical and morphological specialisation, which provides an elevation of the CO2 concentration at the site of Rubisco. We review the key parameters necessary to make the C4 pathway function efficiently, focussing on the diffusion of CO2 out of the bundle sheath compartment. Measurements of cell wall thickness show that the thickness of bundle sheath cell walls in C4 species is similar to cell wall thickness of C3 mesophyll cells. Furthermore, NAD-ME type C4 species, which do not have suberin in their bundle sheath cell walls, do not appear to compensate for this with thicker bundle sheath cell walls. Uncertainties in the CO2 diffusion properties of membranes, such as the plasmalemma, choroplast and mitochondrial membranes make it difficult to estimate bundle sheath diffusion resistance from anatomical measurements, but the cytosol itself may account for more than half of the final calculated resistance value for CO2 leakage. We conclude that the location of the site of decarboxylation, its distance from the mesophyll interface and the physical arrangement of chloroplasts and mitochondria in the bundle sheath cell are as important to the efficiency of the process as the properties of the bundle sheath cell wall. Using a mathemathical model of C4 photosynthesis, we also examine the relationship between bundle sheath resistance to CO2 diffusion and the biochemical capacity of the C4 photosynthetic pathway and conclude that bundle sheath resistance to CO2 diffusion must vary with biochemical capacity if the efficiency of the C4 pump is to be maintained. Finally, we construct a mathematical model of single cell C4 photosynthesis in a C3 mesophyll cell and examine the theoretical efficiency of such a C4 photosynthetic CO2 pump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apel P and Peisker M (1978) Einfluss hoher Sauerstoffkonzentrationen auf den CO2-Kompensationspunkt von C4-Pflanzen. Kulturplanze XXVI: 99–103

    Article  Google Scholar 

  • Bowman WD, Hubick KT, von Caemmerer S and Farquhar GD (1989) Short term changes in leaf carbon isotope discrimination in salt-and water-stressed C4 grasses. Plant Physiol 90: 162–166

    PubMed  CAS  Google Scholar 

  • Brown RH (1997) Analysis of bundle sheath conductance and C4photosynthesis using a PEP-carboxylase inhibitor. Aust J Plant Physiol 24: 549–554

    CAS  Google Scholar 

  • Brown RH and Byrd GT (1993) Estimation of bundle sheath cell conductance in C4 species and O2 insensitivity of photosynthesis. Plant Physiol 103: 1183–1188

    Article  PubMed  CAS  Google Scholar 

  • Buchmann N, Brooks JR, Rapp KD and Ehleringer JR (1996) Carbon isotope composition of C4 grasses is influenced by light and water supply. Plant Cell Environ 19: 392–402

    Article  CAS  Google Scholar 

  • Burnell JN and Hatch MD (1988) Low bundle sheath carbonic anhydrase is apparently essential for effective C4 pathway operation. Plant Physiol 86: 1252–6

    PubMed  CAS  Google Scholar 

  • Chitty JA, Furbank RT, Marshall JS, Chen Z and Taylor WC (1994) Genetic transformation of the C4 plant, Flaveria bidentis. Plant J 6: 949–56

    Article  CAS  Google Scholar 

  • Collatz GJ, Berry JA and Clark JS (1998) Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past and future. Oecologia 114: 441–454

    Article  Google Scholar 

  • Cowan (1986) Economics of carbon fixation in higher plants. In: Givnish T (ed) On the Economy of Plant Form and Function, pp 133–170, Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Deleens E, Ferhi A, and Queiroz O (1983). Carbon isotope fractionation by plants using the C4 pathway. Physiol Veg 21: 897–905

    CAS  Google Scholar 

  • Dengler NG, Donnelly PM, Dengler RE (1996) Differentiation of bundle sheath, mesophyll, and distinctive cells in the C4 grass Arundinella hirta (poaceae). Am J Bot 83: 1391–1405

    Article  Google Scholar 

  • Dever LV, Bailey KJ, Leegood RC and Lea PJ (1997) Control of photosynthesis in Amaranthus edulis mutants with reduced amounts of PEP carboxylase. Aust J Plant Physiol 24: 469–76

    CAS  Google Scholar 

  • Edwards GE and Baker NR (1993) Can assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37: 89–102

    Article  CAS  Google Scholar 

  • Edwards GE, Furbank RT, Hatch MD and Osmond CB (2001) What does it take to be C4? Lessons from the evolution of C4 photosynthesis. Plant Physiol 125: 46–49

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer J and Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Plant Physiol 59: 86–90

    PubMed  CAS  Google Scholar 

  • Ehleringer J and Pearcy RW (1983) Variation in quantum yields for CO2 uptake among C3 and C4 plants. Plant Physiol 73: 555–559

    PubMed  CAS  Google Scholar 

  • Ehleringer JR, Sage RW, Flanagan B and Pearcy RW(1991) Climate change and the evolution of C4 photosynthesis. Tree 6: 95–99

    Google Scholar 

  • Ehleringer JR, Cerling TE and Helliker BR (1997) C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112: 285–299

    Article  Google Scholar 

  • Evans JR and von Caemmerer S (1996) Carbon dioxide diffusion inside leaves. Plant Physiol 110: 339–346

    PubMed  CAS  Google Scholar 

  • Evans JR, von Caemmerer S, Setchell BA and Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with reduced content of Rubisco. Aust J Plant Physiol 21: 475–495

    CAS  Google Scholar 

  • Farquhar GD (1983) On the nature of carbon isotope discrimination in C4 species. Aust J Plant Physiol 10: 205–226

    CAS  Google Scholar 

  • Forster RE, Gros G, Lin L, Ono Y, Wunder M. (1998) The effect of 4,4´-diisothiocyanato-stilbene-2,2´-disulfonate on CO2 permeability of the red blood cell membrane. Proc Natl Acad Sci USA 95: 15815–15820

    Article  PubMed  CAS  Google Scholar 

  • Freitag H and Stichler W (2000) A remarkable new leaf type with unusual photosynthetic tissue in a central Asiatic genus of Chenopodiaceae. Plant Biol 2: 154–160

    Article  Google Scholar 

  • Fukayama H, Tsuchida H, Agarie S, Nomura M, Onodera H, Ono K, Lee B-H, Hirose S, Toki S, Ku MSB, Makino A, Matsuoka M, and Miyao M (2001) Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice. Plant Physiol 127: 1136–1146

    Article  PubMed  CAS  Google Scholar 

  • Furbank, RT (1998) C4 Pathway. In: Raghavendra AS (ed) Photosynthesis; a Comprehensive Treatise, pp 123–135. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Furbank RT and Hatch MD (1987) Mechanism of C4 photosynthesis. The size and composition of the inorganic carbon pool in bundle sheath cells. Plant Physiol 85: 958–964

    PubMed  CAS  Google Scholar 

  • Furbank RT and Hatch MD (1989) CO2 concentrating mechanism of C4 photosynthesis. Permeability of isolated bundle sheath cells to inorganic carbon. Plant Physiol 91: 1364–1371

    PubMed  CAS  Google Scholar 

  • Furbank RT and Taylor WC (1995) Regulation of photosynthesis in C3 and C4 plants: a molecular approach. Plant Cell 7: 797–807

    Article  PubMed  CAS  Google Scholar 

  • Furbank RT, Chitty JA, von Caemmerer S and Jenkins CLD (1996) Antisense RNA inhibition of RbcS gene expression reduces Rubisco level and photosynthesis in the C4 plant Flaveria bidentis. Plant Physiol 111: 725–734

    PubMed  CAS  Google Scholar 

  • Furbank RT, Jenkins CLD and Hatch MD (1990) C4 photosynthesis: quantum requirements, C4 acid overcycling and Q-cycle involvement. Aust J Plant Physiol 17: 1–7

    CAS  Google Scholar 

  • Furbank RT, Jenkins, CLD, Hatch, MD (2000) Regulation of C4 photosynthesis. In: Leegood RC, Sharkey TD and von Caemmerer S (eds) Photosynthesis: Physiology and Metabolism (Advances in Photosynthesis), pp 435–457. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Genty B, Briantais JM and Baker N (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochem Biophys Acta 990: 87–92

    CAS  Google Scholar 

  • Gutknecht J, Bisson MA and Tosteson FC (1977) Diffusion of carbon dioxide through lipid bilayer membranes. J Gen Physiol 69: 779–794

    Article  PubMed  CAS  Google Scholar 

  • Hatch MD (1987) C4 photosynthesis a unique blend of modified biochemistry, anatomy and ultra structure. Biochim Biophys Acta 895: 81–106

    CAS  Google Scholar 

  • Hatch MD and Osmond CB (1976) Compartmentation and transport in C4 photosynthesis. In: Stocking CR and Heber U (eds) Transport in Plants III. Intracellular Interactions and Transport Processes. Encyclopedia of Plant Physiology New Series, Vol 3, pp 144–184. Springer-Verlag, Berlin

    Google Scholar 

  • Hatch MD, Kagawa T and Craig S (1975) Subdivision of C4-pathway species based on differing C4 acid decarboxylating systems and ultrastructural features. Aust J Plant Physiol 2: 111–128

    CAS  Google Scholar 

  • Hatch MD, Agostino A, Jenkins CLD (1995) Measurements of leakage of CO2 from bundle-sheath cells of leaves during C4 photosynthesis. Plant Physiol 108: 173–181

    PubMed  CAS  Google Scholar 

  • Hattersley PW (1982) δ13 C values of C4 types in grasses. Aust J Plant Physiol 9: 139–154

    CAS  Google Scholar 

  • Hattersley PW and Browning AJ (1981) Occurrence of the suberised lamella in leaves of grasses of different photosynthetic types. I. In parenchymatous bundle sheath and PCR ('Kranz') sheaths. Protoplasma 109: 371–333

    Article  Google Scholar 

  • Häusler RE, Hirsch H-J, Kreuzaler F and Peterhansel C (2002) Overexpression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3 photosynthesis. J Exp Bot 53: 591–607

    Article  PubMed  Google Scholar 

  • He D and Edwards E (1996) Estimation of diffusive resistance of bundle sheath cells to CO2 from modelling of C4 photosynthesis. Photosynth Res 49: 195–208

    Article  CAS  Google Scholar 

  • Henderson SA, von Caemmerer S, and Farquhar GD (1992) Shortterm measurements of carbon isotope discrimination in several C4 species. Aust J Plant Physiol 19: 263–285

    CAS  Google Scholar 

  • Henderson SA, Hattersley P, von Caemmerer, S, and Osmond CB (1994) Are C4 pathway plants threatened by global climatic change? In: Schulze ED and Caldwell MM (eds) Ecophysiology of Photosynthesis, pp 529–549. Springer-Verlag, Berlin

    Google Scholar 

  • Jenkins CLD (1989) Effects of the phosphoenolpyruvate carboxylase inhibitor 3,3-dichloro-2-(dihydroxyphosphinoylme thyl) propenoate on photosynthesis. C4 selectivity and studies on C4 photosynthesis. Plant Physiol 89: 1231–1237

    PubMed  CAS  Google Scholar 

  • Jenkins CLD (1997) The CO2 concentrating mechanism of C4 photosynthesis - bundle sheath cell CO2 concentration and leakage. Aust J Plant Physiol 24: 543–547

    Article  CAS  Google Scholar 

  • Jenkins CLD, Furbank RT and Hatch MD (1989) Inorganic carbon diffusion between C4 mesophyll and bundle sheath cells. Plant Physiol 91: 1356–1363

    PubMed  CAS  Google Scholar 

  • Kogami H, Hanba YT, Kibe T, Terashima I and Masuzawa T (2001) CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes. Plant Cell Environ 24: 529–538

    Article  CAS  Google Scholar 

  • Krall JP and Edwards GE (1990) Quantum yields of Photosytem II electron transport and carbon fixation in C4 plants. Aust J Plant Physiol 17: 579–588

    CAS  Google Scholar 

  • Krall JP and Edwards GE (1991) Environmental effects on the relationship between quantum yields of carbon assimilation and in vivo PS II electron transport in maize. Aust J Plant Physiol 18: 265–278

    Google Scholar 

  • Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hiose T, Toki S, Miyao M and Matsuoka M (1999) High level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol 17: 76–80

    Article  PubMed  CAS  Google Scholar 

  • Leegood RC (2002) C4 Photosynthesis: Principals of CO2 concentration and prospects for its introduction into C3 plants. J Exp Bot 53: 581–590

    Article  PubMed  CAS  Google Scholar 

  • Longstreth DJ, Hartsock TL, Nobel PS (1980) Mesophyll cell properties for some C3 and C4 species with high photosynthetic rates. Plant Physiol 48: 494–498

    Article  Google Scholar 

  • Liu YQ, Dengler NG (1994) Bundle sheath and mesophyll cell differentiation in the C4 dicotyledon Atriplex rosea - quantitative ultrastructure. Can J Bot Rev Can Bot 72: 644–657

    Google Scholar 

  • Ludwig M, von Caemmerer S, Price GD, Badger MR, Furbank RT (1998) Expression of tobacco carbonic anhydrase in the C4 dicot Flaveria bidentis. Plant Physiol 117: 1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka M, Furbank RT, Fukayama H, Miyao M (2001) Genetic engineering of C4 photosynthesis. Ann Rev Plant Physiol Mol Biol 52: 297–314

    Article  CAS  Google Scholar 

  • Meinzer FC and Zhu J 1998. Nitrogen stress reduces the efficiency of the C4 CO2 concentrating system, and therefore quantum yield, in saccharum (sugarcane) species. J Exp Bot 49: 1227–1234

    Article  CAS  Google Scholar 

  • Meister M, Agostino A and Hatch MD (1996) The roles of malate and aspartate in C4 photosynthetic metabolism in Flaveria bidentis (L.). Planta 199: 262–269

    Article  CAS  Google Scholar 

  • Oberhuber W and Edwards G (1993) Temperature dependence of the linkage of quantum yield of Photosystem II to CO2 fixation in C4 and C3 plants. Plant Physiol 101: 507–512

    PubMed  CAS  Google Scholar 

  • Oberhuber W, Dai Z-Y, Edwards G (1993) Light dependence of quantum yields of Photosystem II and CO2 fixation in C3 and C4 plants. Photosynth Res 35: 265–274

    Article  CAS  Google Scholar 

  • O'Leary, MH (1981). Carbon isotope fractionation in plants. Photochemistry 20: 553–567

    Article  Google Scholar 

  • Ohsugi R, Samejima M, Chonan N and Murata T (1988)13C and the occurrence of the suberized lamellae in some Panicum species. Ann Bot 62: 53–59

    CAS  Google Scholar 

  • Parkhurst DF (1994) Diffusion of CO2 and other gases in leaves. New Phytol 126: 449–479

    Article  CAS  Google Scholar 

  • Peisker M (1982) The effect of CO2 leakage from bundle sheath cells on carbon isotope discrimination in C4 plants. Photosynthetica 13: 198–207

    Google Scholar 

  • Peisker M (1988) Modelling of C4 photosynthesis at low quantum flux densities. In: Vaklinova S, Stanev V and Dilova M (eds) International Symposium on Plant Mineral Nutrition and Photosynthesis '87. Vol II Photosynthesis, pp 226–234. Bulgarian Academy of Sciences, Sofia

    Google Scholar 

  • Prendergast HDV, Hattersley PW and Stone NE (1987) New structural/ biochemical associations in leaf blades of C4 grasses (Poaceae). Aust J Plant Physiol 14: 403–420

    CAS  Google Scholar 

  • Prasad GVR, Coury LA, Finn F, and Zeidel ML (1998) Reconstituted aquaporin 1 water channels transport CO2 across membranes. J Biol Chem 273: 33123–33126

    Article  PubMed  CAS  Google Scholar 

  • Ranjith SA, Meinzer FC, Perry MH and Thom M (1995) Partitioning of carboxylase activity in nitrogen-stressed sugarcane and its relation to bundle sheath leakiness to CO2, photosynthesis and carbon isotope discrimination. Aust J Plant Physiol 22: 903–911

    CAS  Google Scholar 

  • Reiskind JB, Madsen TV, Van Ginkel LC and Bowes G (1997). Evidence that inducible C4-type photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla, a submersed monocot. Plant Cell Environ 20: 211–220

    Article  CAS  Google Scholar 

  • Repo E and Hatch MD (1976) Photosynthesis in Gomphrena celosioides and its classification among C4 pathway plants. Aust J Plant Physiol 3: 863–876

    Article  CAS  Google Scholar 

  • Sage RF and Kubien DS (2003) Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth Res 77: 209–225 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Sage RF and Monson RK (1999) C4 Plant Biology. Academic Press, San Diego, California

    Google Scholar 

  • Sage RF, Pearcy WR, and Seemann JR (1987) The nitrogen use efficiency of C3 and C4 plants. III Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol 85: 355–359

    PubMed  CAS  Google Scholar 

  • Sage RF, Li M and Monson RK (1999) The taxonomic distribution of C4 photosynthesis. In: Sage RF and Monson RK (eds) C4 Plant Biology, pp 173–211. Academic Press, San Diego, California

    Google Scholar 

  • Saliendra NZ, Meinzer FC, Perry MH and Thom M (1996) Association between partitioning of carboxylase activity and bundle sheath leakiness to CO2, carbon isotope discrimination, photosynthesis and growth in sugarcane. J Exp Bot 47: 907–914

    CAS  Google Scholar 

  • Siebke K, von Caemmerer S, Badger MR and Furbank RT (1997) Expressing an RbcS antisense gene in transgenic Flaveria bidentis leads to an increased quantum yield per CO2 fixed in Photosystem I and II. Plant Physiol 115: 1163–1174

    PubMed  CAS  Google Scholar 

  • Takeuchi K, Akagi H, Kamasawa N, Osumi M and Honda H (2000) Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta 211: 265–274

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida H, Tamai T, Fukayama H, Agarie S, Nomura M, Onodera H, Ono K, Nishizawa Y, Lee BH, Hirose S, Toki S, Ku MSB, Matsuoka M and Miyao M. (2001) High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. Plant Cell Physiol 42: 138–145

    Article  PubMed  CAS  Google Scholar 

  • Terashima I and Ono K. (2002) Effects of HgCl2 on CO2 dependence of leaf photosynthesis: evidence indicating involvement of aquaporins in CO2 diffusion across the plasma membrane. Plant Cell Physiol 43: 70–78

    Article  PubMed  CAS  Google Scholar 

  • Usuda H (1984) Variations in the photosynthesis rate and activity of photosynthetic enzymes in maize leaf tissue of different ages. Plant Cell Physiol 25: 1297–1301

    CAS  Google Scholar 

  • von Caemmerer S (2000) Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Collingwood, Australia

    Google Scholar 

  • von Caemmerer S and Furbank RT (1999) Themodelling of C4 photosynthesis. In: Sage RF and Monson RK (eds) C4 Plant Biology, pp 173–211. Academic Press, San Diego, California

    Google Scholar 

  • von Caemmerer S, Ludwig M, Millgate A, Farquhar GD, Price D, Badger MR and Furbank RT (1997a). Carbon isotope discrimination during C4 photosynthesis: insights from transgenic plants. Aust J Plant Physiol 24: 487–494

    CAS  Google Scholar 

  • von Caemmerer S, Millgate A, Farquhar, GD and Furbank RT (1997b) Reduction of Rubisco by antisense RNA in the C4plant Flaveria bidentis leads to reduced assimilation rates and increased carbon isotope discrimination. Plant Physiol 113: 469–477

    PubMed  CAS  Google Scholar 

  • Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H and Edwards GE (2001) Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414: 543–546

    Article  PubMed  CAS  Google Scholar 

  • Watling JR, Press MC, Quick WP (2000) Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum. Plant Physiol 123: 1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Wilson JR and Hattersley PW (1983) In vitro digestion of bundle sheath cells in rumen fluid and its relation to the suberised lamella and C4 photsynthetic type in Panicum species. Grass Forage Sci 38: 219–223

    Article  Google Scholar 

  • Wingler A, Walker RP, Chen ZH and Leegood RC (1999) Phosphoenolpyruvate carboxykinase is involved in the decarboxylation of aspartate in the bundle sheath of maize. Plant Physiol 120: 539–545

    Article  PubMed  CAS  Google Scholar 

  • Wong S-C, Cowan IR, Farquhar GD (1985) Leaf conductance in relation to rate of CO2 assimilation. I Influence of nitrogen nutrition, phosphorus nutrition, ontogeny, photon flux density, and ambient partial pressure of CO2. Plant Physiol 78: 821–825

    Article  PubMed  Google Scholar 

  • Yang BX, Fukuda N, van Hoek A, Matthay MA, Ma TH, Verkman AS (2000) Carbon dioxide permeability of aquaporin-1 measured in erythrocytes and lung of aquaporin-1 null mice and in reconstituted proteoliposomes. J Biol Chem 275: 2686–2692

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Caemmerer, S., Furbank, R.T. The C4 pathway: an efficient CO2 pump. Photosynthesis Research 77, 191–207 (2003). https://doi.org/10.1023/A:1025830019591

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025830019591

Navigation