Advertisement

Experimental & Applied Acarology

, Volume 29, Issue 3–4, pp 331–344 | Cite as

The fossil record and the origin of ticks (Acari: Parasitiformes: Ixodida)

  • José de la Fuente
Article

Abstract

Ticks are obligate hematophagous ectoparasites of terrestrial vertebrates. Hypotheses on the origin of ticks have been proposed based on tick-host associations and the total-evidence approach analysis of morphological and molecular characters. Nevertheless, the origin of ticks remains a controversial issue. Here, I revised the tick fossil record including reports from the literature and the description of 7 new specimens. The analysis of fossil ticks provides few clues to tick evolution but does not contradict recent hypotheses based on total-evidence approach analysis that place the origin of ticks in the Cretaceous (65–146 mya) with most of the evolution and dispersal occurring during the Tertiary (5–65 mya).

Amber Evolution Fossil Tick 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin J.J., Ross A.J., Smith A.B., Fortey R.A. and Thomas R.H. 1997. Problems of reproducibilitydoes geologically ancient DNA survive in amber-preserved insects? Proc. R. Soc. Lond. B Biol. Sci. 264: 467–474.CrossRefGoogle Scholar
  2. Bada J.L., Wang X.S. and Hamilton H. 1999. Preservation of key biomolecules in the fossil record: current knowledge and future challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 77–86.PubMedCrossRefGoogle Scholar
  3. Balashov Y.S. 1989. Coevolution of ixodid ticks and terrestrial vertebrates. Parazitologiya (Leningrad) 23: 427–467.Google Scholar
  4. Balashov Y.S. 1994. Importance of continental drift in the distribution and evolution of ixodid ticks. Entomol. Rev. 73: 42–50.Google Scholar
  5. Beati L. and Keirans J.E. 2002. Reassessment of the systematic relationships among Amblyomma species based on ribosomal gene sequences. In: 4th International Conference on Ticks and Tick-borne Pathogens, Banff, Alberta, Canada, 21–26 July., pp. 27–28, Abstract #10.Google Scholar
  6. Bernini F. 1991. Fossil Acarida. In: Simonetta A. and Morris S.C. (eds), The early evolution of Metazoa and the significance of problematic taxa. Cambridge University Press, Cambridge, pp. 253–262.Google Scholar
  7. Black IV W.C. and Piesman J. 1994. Phylogeny of hard-and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proc. Natl. Acad. Sci. U.S.A. 91: 10034–10038.PubMedCrossRefGoogle Scholar
  8. Camicas J.L., Hervy J.P., Adam F. and Morel P.C. 1998. The ticks of the world (Acarida, Ixodida). Orstom editions, Paris.Google Scholar
  9. Dobson S.J. and Barker S.C. 1999. Phylogeny of the hard ticks (Ixodidae) inferred from 18S RNA indicates the genus Aponomma is paraphyletic. Mol. Phylogenet. Evol. 11: 288–295.PubMedCrossRefGoogle Scholar
  10. Estrada-Peñ a A. and Jongejan F. 1999. Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp. Appl. Acarol. 23: 685–715.CrossRefGoogle Scholar
  11. Filippova N.A. 1977. Ixodid ticks of the subfamily Amblyomminae. Izd, Nauka, Leningrad.Google Scholar
  12. Gutiérrez G. and Marín A. 1998. The most ancient DNA recovered from an amber-preserved specimen may not be as ancient as it seems. Mol. Biol. Evol. 15: 926–929.PubMedGoogle Scholar
  13. Hirst S. 1923. On some arachnid remains from the Old Red Sandstone (Rhynie Chert, Aberdeenshire). Ann. Mag. Nat. Hist. (9th series) 12: 455–474.Google Scholar
  14. Hoogstraal H. 1970–1984. Bibliography of ticks and tick-borne diseases from Homer (about 800 B.C.) to 31 Dec. 1969 (to 1983). Special publications, NAMRU3, Cairo.Google Scholar
  15. Hoogstraal H. 1985. Argasid and nuttalliellid ticks as parasites and vectors. Adv. Parasitol. 24: 135–238.PubMedCrossRefGoogle Scholar
  16. Hoogstraal H. and Aeschlimann A. 1982. Tick-host specificity. Bull. Soc. Entomol. Suisse 55: 5–32.Google Scholar
  17. Klompen J.S., Black IV W.C., Keirans J.E. and Oliver J.H. Jr 1996. Evolution of ticks. Annu. Rev. Entomol. 41: 141–161.PubMedCrossRefGoogle Scholar
  18. Klompen J.S., Black IV W.C., Keirans J.E. and Norris D.E. 2000. Systematics and biogeography of hard ticks, a total evidence approach. Cladistics 16: 79–102.CrossRefGoogle Scholar
  19. Klompen H. and Grimaldi D. 2001. First Mesozoic record of a parasitiform mite: a larval argasid tick in Cretaceous amber (Acari: Ixodida: Argasidae). Ann. Entomol. Soc. Am. 94: 10–15.CrossRefGoogle Scholar
  20. Klompen H., Dobson S.J. and Barker S.C. 2002. A new subfamily, Bothriocrotoninae n. subfam., for the genus Bothriocroton Keirans, King & Sharrad, 1994 status amend. (Ixodida: Ixodidae), and the synonymy of Aponomma Neumann, 1899 with Amblyomma Koch, 1844. Syst. Parasitol. 53: 101–107.PubMedCrossRefGoogle Scholar
  21. Lane R.S. and Poinar G.O. 1986. First fossil tick (Acari: Ixodidae) in New World amber. Int. J. Acarol. 12: 75–78.CrossRefGoogle Scholar
  22. Morel P.C. 1969. Contribution a la connaissance de la distribution des tiques (Acariens, Ixodidae et Amblyommidae) an Afrique Ethiopienne continentale. Ph.D. dissertation, Univ. of Paris, Paris, 388 pp.Google Scholar
  23. Murrell A., Campbell N.J.H. and Barker S.C. 2001. A total-evidence phylogeny of ticks provides insights into the evolution of life cycles and biogeography. Mol. Phylogenet. Evol. 21: 244–258.PubMedCrossRefGoogle Scholar
  24. Norton R.A., Bonamo P.M., Grierson J.D. and Shear W.M. 1988. Oribatid mite fossils from a Devonian deposit near Gilboa, New York State. J. Paleontol. 62: 259–269.Google Scholar
  25. Obenchain F.D. and Galun R. 1982. Physiology of ticks. Current themes in tropical science. Pergamon Press, Oxford, pp vii-ix.Google Scholar
  26. Oliver J.H. Jr 1989. Biology and systematics of ticks (Acari: Ixodida). Ann. Rev. Ecol. Syst. 20: 397–430.CrossRefGoogle Scholar
  27. Parola P. and Raoult D. 2001. Tick-borne bacterial diseases emerging in Europe. Clin. Microbiol. Infect. 7: 80–83.PubMedCrossRefGoogle Scholar
  28. Poinar G.O. 1992. Life in amber. Stanford University Press, Stanford, CA.Google Scholar
  29. Poinar G.O. 1994. The range of life in amber: significance and implications in DNA studies. Experientia 50: 536–542.PubMedCrossRefGoogle Scholar
  30. Poinar G.O. 1995. First fossil soft tick, Ornithodoros antiquus n. sp. (Acari: Argasidae) in Dominican amber with evidence of their mammalian host. Experimentia Basel 51: 384–387.CrossRefGoogle Scholar
  31. Poinar H.N., Hoss M., Bada J.L. and Paabo S. 1996. Amino acid racemization and the preservation of ancient DNA. Science 272: 864–866.PubMedGoogle Scholar
  32. Rice P.C. 1980. Amber, the golden gem of the ages. Van Nostrand Reinhold Co., New York.Google Scholar
  33. Schille F. 1916. Entomologie aus der Mammut-und Rhinoceros-Zeit Galiziens. Entomol. Z. 30: 42–43.Google Scholar
  34. Scudder S.H. 1885. A contribution to our knowledge of Paleozoic Arachnides. Proc. Am. Acad. Sci. 2: 12.Google Scholar
  35. Selden P.A. 1993. Arthropoda (Aglaspidida, Pycnegonida and Chelicerata). In: Benton M.J. (ed.), The fossil record 2. Chapman & Hall, New York, pp. 297–320.Google Scholar
  36. Smith T. and Kilborne F.L. 1893. Investigations onto the nature, causation, and prevention of Southern Cattle Fever. In: U.S. Department of Agriculture. Eight and Ninth Annual Reports of the Bureau of Animal Industry for the years 1891 and 1892. Government Printing Office, Washington, pp. 177–304 U.S. Department of Agriculture. Eight and Ninth Annual Reports of the Bureau of Animal Industry for the years 1891 and 1892. Government Printing Office, Washington.Google Scholar
  37. Sonenshine D.E. 1997. Biology of ticks. Vol. 2. Oxford Univ Press, Oxford.Google Scholar
  38. Van der Hammen L. 1977. A new classification of Chelicerata. Zool. Med. Leid. 51: 307–319.Google Scholar
  39. Weidner H. 1964. Eine Zecke, Ixodes succineus sp. N., im baltischen Bernstein. Veröff. Ñberseemus. Bremen 3: 143–151.Google Scholar
  40. Wier A., Dolan M., Grimaldi D., Guerrero R., Wagensberg J. and Margulis L. 2002. Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber. Proc. Natl. Acad. Sci. U.S.A. 99: 1410–1413.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • José de la Fuente
    • 1
  1. 1.Department of Veterinary Pathobiology, College of Veterinary MedicineOklahoma State UniversityStillwaterUSA

Personalised recommendations