Skip to main content
Log in

Tensioned Quasi-Interpolation Via Geometric Continuity

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The paper proposes a method for the construction of C 2 quasi-interpolating functions with tension properties. The constructed quasi-interpolant is a parametric cubic curve and its shape can be easily controlled via tension parameters which have an immediate geometric interpretation. Numerical examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Akima, A new method of interpolation and smooth curve fitting based on local procedures, J. Assoc. Comput. Mach. 17 (1970) 589–602.

    Google Scholar 

  2. W. Boehm, Curvature continuous curves and surfaces, Comput. Aided Geom. Design 2 (1985) 313–323.

    Google Scholar 

  3. R.E. Carlson and F.N. Fritsch, Monotone piecewise bicubic interpolation, SIAM J. Numer. Anal. 22 (1985) 386–400.

    Google Scholar 

  4. C.K. Chui, H. Diamond and L. Raphael, Shape-preserving quasi-interpolation and interpolation by box spline surfaces, J. Comput. Appl. Math. 25 (1989) 169–198.

    Google Scholar 

  5. C. Conti and R. Morandi, A bivariate shape-preserving quasi-interpolant method with positive compactly supported bases, J. C. A. A. A. (2001) to appear.

  6. C. Conti, R. Morandi and C. Rabut, Shape-preserving quasi-interpolating univariate cubic splines, in: Mathematical Methods for Curves and Surfaces, Vol. II, eds. M. Dæhlen, T. Lyche and L.L. Schumaker, Lillehammer, 1997 (Vanderbilt Univ. Press, Nashville, 1998) pp. 550–62.

    Google Scholar 

  7. C. Conti, R. Morandi and C. Rabut, P1-reproducing shape-preserving quasi-interpolant using positive quadratic splines with local support, J. Comput. Appl. Math. 104 (1999) 111–122.

    Google Scholar 

  8. P. Costantini, Curve and surface construction using variable degree polynomial splines, Comput. Aided Geom. Design 17 (2000) 419–446.

    Google Scholar 

  9. N. Dyn, A. Edelman and C.A. Micchelli, On locally supported basis functions for the representation of geometrically continuous curves, Analysis 7 (1987) 313–341.

    Google Scholar 

  10. G. Farin, D. Hansford and A. Worsey, The singular cases for γ-spline interpolation, Comput. Aided Geom. Design 7 (1990) 533–546.

    Google Scholar 

  11. T.N.T. Goodman, Total positivity and the shape of curves, in: Total Positivity and its Applications, eds. M. Gasca and C.A. Micchelli (Kluwer, Dordrecht, 1996) pp. 157–186.

    Google Scholar 

  12. T.N.T. Goodman, Shape preserving interpolation by curves, in: Proc. of the 4th Internat. Symposium on Algorithms for Approximation, Huddersfield, 15-20 July 2001, to appear.

  13. J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design (A.K. Peters,_ Wellesley,_ MA, 1993).

    Google Scholar 

  14. P.E. Koch and T. Lyche, Exponential B-splines in tension, in: Approximation Theory, Vol. VI, eds. C.K. Chui, L.L. Schumaker and J.D. Ward (Academic Press, New York, 1989) pp. 361–364.

    Google Scholar 

  15. P.E. Koch and T. Lyche, Construction of exponential tension B-splines of arbitrary order, in: Curves and Surfaces, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, New York, 1991) pp. 255–258.

    Google Scholar 

  16. P.E. Koch and T. Lyche, Interpolation with exponential B-splines in tension, Geometric Modelling, Comput. Suppl. 8 (1993) 173–190.

    Google Scholar 

  17. B.I. Kvasov, Shape preserving spline approximation via local algorithms, in: Advanced Topics in Multivariate Approximation, eds. F. Fontanella, K. Jetter and P.J. Laurent, Ser. Approx. Decomposition, Vol. 8 (World Science, River Edge, 1996) pp. 181–196.

    Google Scholar 

  18. B.I. Kvasov, Algorithms for shape preserving local approximation with automatic selection of tension parameters, Comput. Aided Geom. Design 17 (2000) 17–37.

    Google Scholar 

  19. B.I. Kvasov and P. Sattayatham, GB-splines of arbitrary order, J. Comput. Appl. Math. 104 (1999) 63–88.

    Google Scholar 

  20. P. Lamberti and C. Manni, Shape preserving C 2 functional interpolation via parametric cubics, Numer. Algorithms 28 (2001) 229–254.

    Google Scholar 

  21. T. Lyche and L.L. Schumaker, Local spline approximation methods, J. Approx. Theory 15 (1975) 294–325.

    Google Scholar 

  22. C. Manni, C 1 comonotone Hermite interpolation via parametric cubics, J. Comput. Appl. Math. 69 (1996) 143–157.

    Google Scholar 

  23. C. Manni, On shape preserving C 2 Hermite interpolation, BIT 41 (2001) 127–148.

    Google Scholar 

  24. G.M. Nielson, Some piecewise polynomial alternatives to spline under tension, in: Computer Aided Geometric Design, eds. R.E. Barnill and R.F. Riesenfeld (Academic Press, New York, 1974) pp. 209–235.

    Google Scholar 

  25. C. Rabut, B-splines polyharmoniques cardinales: Interpolation, quasi-interpolation, filtrage, Thèse No. 1413, Université Paul Sabatier, Toulouse (1990).

    Google Scholar 

  26. I.J. Schoenberg, Contribution to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae, Quart. Appl. Math. 4 (1946) 45–99.

    Google Scholar 

  27. D.G. Schweikert, An interpolation curve using a spline in tension, J. Math. Phys. 45 (1966) 312–317.

    Google Scholar 

  28. R.J. Walker, Algebraic Curves (Dover, New York, 1962).

    Google Scholar 

  29. Z.M. Wu and R. Schaback, Shape preserving properties and convergence of univariate multiquadric quasi-interpolation, Acta Math. Appl. Sinica (English Ser.) 10(4) (1994) 441–446.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamberti, P., Manni, C. Tensioned Quasi-Interpolation Via Geometric Continuity. Advances in Computational Mathematics 20, 105–127 (2004). https://doi.org/10.1023/A:1025823221346

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025823221346

Navigation