Skip to main content

Advertisement

Log in

The Transgenic Rabbit as Model for Human Diseases and as a Source of Biologically Active Recombinant Proteins

  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Until recently, transgenic rabbits were produced exclusively by pronuclear microinjection which results in additive random insertional transgenesis; however, progress in somatic cell cloning based on nuclear transfer will soon make it possible to produce rabbits with modifications to specific genes by the combination of homologous recombination and subsequent prescreening of nuclear donor cells. Transgenic rabbits have been found to be excellent animal models for inherited and acquired human diseases including hypertrophic cardiomyopathy, perturbed lipoprotein metabolism and atherosclerosis. Transgenic rabbits have also proved to be suitable bioreactors for the production of recombinant protein both on an experimental and a commercial scale. This review summarizes recent research based on the transgenic rabbit model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aigner B, Besenfelder U, Seregi J, Frenyo LV, Sahin-Toth T and Brem G (1996) Expression of the murine wild-type tyrosinase gene in transgenic rabbits. Transgenic Res 5: 405–411.

    Google Scholar 

  • Aigner B, Pambalk K, Reichart U, Besenfelder U, Bosze Z, Renner M et al. (1999) Species-specific alternative splicing of transgenic RNA in the mammary glands of pigs, rabbits, and mice. Biochem Biophys Res Commun 257: 843–850.

    Google Scholar 

  • Amalfitano A, Bengur AR, Morse RP, Majure JM, Case LE, Veerling DL et al. (2001) Recombinant human acid alphaglucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med 3: 132–138.

    Google Scholar 

  • Apostel F, Dammann R, Pfeifer G and Greeve J (2002) Reduced expression and increased CpG dinucleotide methylation of the rat APOBEC-1 promoter in transgenic rabbits. Biochim Biophys Acta 1577: 384–394.

    Google Scholar 

  • Araki M, Fan JL, Challah M, Bensadoun A, Yamada N, Honda K et al. (2000) Transgenic rabbits expressing human lipoprotein lipase. Cytotechnology 33: 93–99.

    Google Scholar 

  • Baranyi M, Brignon G, Anglade P and Ribadeau-Dumas B (1995) New data on the proteins of rabbit (Oryctolagus cuniculus) milk. Comp Biochem Physiol B Biochem Mol Biol 111: 407–415.

    Google Scholar 

  • Barbagallo CM, Fan J, Blanche PJ, Rizzo M, Taylor JM and Krauss RM (1999) Overexpression of human hepatic lipase and ApoE in transgenic rabbits attenuates response to dietary cholesterol and alters lipoprotein subclass distributions. Arterioscler Thromb Vasc Biol 19: 625–632.

    Google Scholar 

  • Besenfelder U, Aigner B, Müller M and Brem G (1998) Generation and application of transgenic rabbits. In: Cid-Arregui A and Garcia-Carrancá A (eds), Microinjection and Transgenesis. (pp. 561–586) Springer-Verlag, Berlin.

    Google Scholar 

  • Boulanger L, Mallet S, Chesné P, Chrenek P, Viglietta C, Houdebine LM et al. (2002) Advantages and limits of using ubiquitous expressed EF1 alpha promoter for transgenesis in vivo and in vitro in rabbit. Transgenic Res 11: 88.

    Google Scholar 

  • Boullier A, Hennuyer N, Tailleux A, Furman C, Duverger N, Caillaud JM et al. (2001) Increased levels of high-density lipoprotein cholesterol are ineffective in inhibiting the development of immune responses to oxidized low-density lipoprotein and atherosclerosis in transgenic rabbits expressing human apolipoprotein (apo) A-I with severe hypercholesterolaemia. Clin Sci (Lond) 100: 343–355.

    Google Scholar 

  • Brem G, Hartl P, Besenfelder U, Wolf E, Zinovieva N and Pfaller R (1994) Expression of synthetic cDNA sequences encoding human insulin-like growth factor-1 (IGF-1) in the mammary gland of transgenic rabbits. Gene 149: 351–355.

    Google Scholar 

  • Brem G, Besenfelder U, Zinovieva N, Seregi J, Solti L, Hartl P (1995) Mammary gland-specific expression of chymosin constructs in transgenic rabbits. Theriogenology 43: 175.

    Google Scholar 

  • Brem G, Besenfelder U, Aigner B, Muller M, Liebl I, Schutz G et al. (1996) YAC transgenesis in farm animals: rescue of albinism in rabbits. Mol Reprod Dev 44: 56–62.

    Google Scholar 

  • Brousseau ME and Hoeg JM (1999) Transgenic rabbits as models for atherosclerosis research. J Lipid Res 40: 365–375.

    Google Scholar 

  • Buhler TA, Bruyere T, Went DF, Stranzinger G and Burki K (1990) Rabbit beta-casein promoter directs secretion of human interleukin-2 into the milk of transgenic rabbits. Biotechnology (NY) 8: 140–143.

    Google Scholar 

  • Castro FO, de Armas R, Puentes P, Solano R, Aguilar A and Ramos B (1992) Factors affecting the efficiency of generation of rabbits from microinjection embryos for transgenic studies. AdvModern Biotechnol 1: 18.

    Google Scholar 

  • Castro FO, Limonta J, Rodriguez A, Aguirre A, de la Fuente J, Aguilar A et al. (1999) Transgenic rabbits for the production of biologically-active recombinant proteins in the milk. Genet Anal 15: 179–187.

    Google Scholar 

  • Chesne P, Adenot PG, Viglietta C, Baratte M, Boulanger L and Renard JP (2002) Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol 20: 366–369.

    Google Scholar 

  • Costa C, Solanes G, Visa J and Bosch F (1998) Transgenic rabbits overexpressing growth hormone develop acromegaly and diabetes mellitus. FASEB J 12: 1455–1460.

    Google Scholar 

  • Coulibaly S, Besenfelder U, Fleischmann M, Zinovieva N, Grossmann A, Wozny M et al. (1999) Human nerve growth factor beta (hNGF-beta): mammary gland specific expression and production in transgenic rabbits. FEBS Lett 444: 111–116.

    Google Scholar 

  • Coulibaly S, Besenfelder U, Miller I, Zinovieva N, Lassnig C, Kotler T et al. (2002) Expression and characterization of functional recombinant bovine follicle-stimulating hormone (boFSHalpha/beta) produced in the milk of transgenic rabbits. Mol Reprod Dev 63: 300–308.

    Google Scholar 

  • Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S et al. (2002) Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20: 251–255.

    Google Scholar 

  • DiPaolo JA, Woodworth CD, Popescu NC, Notario V and Doniger J (1989) Induction of human cervical squamous cell carcinoma by sequential transfection with human papillomavirus 16 DNA and viral Harvey ras. Oncogene 4: 395–399.

    Google Scholar 

  • Dove A (2000) Milking the genome for profit. Nat Biotechnol 18: 1045–1048.

    Google Scholar 

  • Duby RT, Cuniff MB, Belak JM, Balise JJ and Robl JM (1993) Effect of milking frequency on collection of milk from nursing New Zealand white rabbits. Anim Biotechnol 4: 31–42.

    Google Scholar 

  • Dunn CS, Mehtali M, Houdebine LM, Gut JP, Kirn A and Aubertin AM (1995) Human immunodeficiency virus type 1 infection of human CD4-transgenic rabbits. J Gen Virol 76: 1327–1336.

    Google Scholar 

  • Duverger N, Viglietta C, Berthou L, Emmanuel F, Tailleux A, Parmentier-Nihoul L et al. (1996a) Transgenic rabbits expressing human apolipoprotein A-I in the liver. Arterioscler Thromb Vasc Biol 16: 1424–1429.

    Google Scholar 

  • Duverger N, Kruth H, Emmanuel F, Caillaud JM, Viglietta C, Castro G et al. (1996b) Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits. Circulation 94: 713–717.

    Google Scholar 

  • Emmanuel FJ, Caillaud M, Hennuyer N, Fievet C, Viry I, Houdebine LM et al. (1996) Overexpression of human alipoprotein A-I inhibits atherosclerosis development in Watanabe rabbits. Circulation 94: I–632.

    Google Scholar 

  • Ernst LK, Zakcharchenko VI, Suraeva NM, Ponomareva TI, Miroschnichenko OI, Prokofev MI and Tikchonenko TI (1991) Transgenic rabbits with antisense RNA gene targeted at adenovirus H5. Theriogenology 35: 1257.

    Google Scholar 

  • Fan J and Watanabe T (2000a) Cholesterol-fed and transgenic rabbit models for the study of atherosclerosis. J Atheroscler Thromb 7: 26–32.

    Google Scholar 

  • Fan J and Watanabe T (2000b) Transgenic rabbits expressing human apolipoprotein (a). J Atheroscler Thromb 7: 8–13.

    Google Scholar 

  • Fan J, Wang J, Bensadoun A, Lauer SJ, Dang Q, Mahley RW et al. (1994) Overexpression of hepatic lipase in transgenic rabbits leads to a marked reduction of plasma high density lipoproteins and intermediate density lipoproteins. Proc Natl Acad Sci USA 91: 8724–8728.

    Google Scholar 

  • Fan J, McCormick SP, Krauss RM, Taylor S, Quan R, Taylor JM et al. (1995) Overexpression of human apolipoprotein B-100 in transgenic rabbits results in increased levels of LDL and decreased levels of HDL. Arterioscler Thromb Vasc Biol 15: 1889–1899.

    Google Scholar 

  • Fan J, Ji ZS, Huang Y, de Silva H, Sanan D, Mahley RW et al. (1998) Increased expression of apolipoprotein E in transgenic rabbits results in reduced levels of very low density lipoproteins and an accumulation of low density lipoproteins in plasma. J Clin Invest 101: 2151–2164.

    Google Scholar 

  • Fan J, Challah M and Watanabe T (1999) Transgenic rabbit models for biomedical research: current status, basic methods and future perspectives. Pathol Int 49: 583–594.

    Google Scholar 

  • Fan J, Challah M, Shimoyamada H and Watanabe T (2000) Transgenic rabbits expressing human apolipoprotein(a) as a useful model for the study of lipoprotein(a). Ann NY Acad Sci 902: 347–351.

    Google Scholar 

  • Fan J, Sun H, Unoki H, Shiomi M and Watanabe T (2001a) Enhanced atherosclerosis in Lp(a) WHHL transgenic rabbits. Ann NY Acad Sci 947: 362–365.

    Google Scholar 

  • Fan J, Unoki H, Kojima N, Sun H, Shimoyamada H, Deng H et al. (2001b) Overexpression of lipoprotein lipase in transgenic rabbits inhibits diet-induced hypercholesterolemia and atherosclerosis. J Biol Chem 276: 40071–40079.

    Google Scholar 

  • Fan J, Shimoyamada H, Sun H, Marcovina S, Honda K and Watanabe T (2001c) Transgenic rabbits expressing human apolipoprotein( a) develop more extensive atherosclerotic lesions in response to a cholesterol-rich diet. Arterioscler Thromb Vasc Biol 21: 88–94.

    Google Scholar 

  • Fernandes J, Tardif G, Martel-Pelletier J, Lascau-Coman V, Dupuis M, Moldovan F et al. (1999) In vivo transfer of interleukin551 1 receptor antagonist gene in osteoarthritic rabbit knee joints: prevention of osteoarthritis progression. Am J Pathol 154: 1159–1169.

    Google Scholar 

  • Franz WM, Mueller OJ, Fleischmann M, Babij P, Frey N, Mueller M et al. (1999) The 2.3 kb smooth muscle myosin heavy chain promoter directs gene expression into the vascular system of transgenic mice and rabbits. Cardiovasc Res 43: 1040–1048.

    Google Scholar 

  • Galet C, Le Bourhis CM, Chopineau M, Le Griec G, Perrin A, Magallon T et al. (2001) Expression of a single betaalpha chain protein of equine LH/CG in milk of transgenic rabbits and its biological activity. Mol Cell Endocrinol 174: 31–40.

    Google Scholar 

  • Ganda OP and Simonson DC (1993) Growth hormone, acromegaly and diabetes. Diabetes Res 1: 286–300.

    Google Scholar 

  • Garber K (2000) rFactor VIII deficit questioned. Nat Biotechnol 18: 1133.

    Google Scholar 

  • Giri I, Danos O and Yaniv M (1985) Genomic structure of the cottontail rabbit (Shope) papillomavirus. Proc Natl Acad Sci USA 82: 1580–1584.

    Google Scholar 

  • Graur D, Duret L and Gouy M (1996) Phylogenetic position of the order Lagomorpha (rabbits, hares and allies). Nature 379: 333–335.

    Google Scholar 

  • Graves KH and Moreadith RW (1993) Derivation and characterization of putative pluripotential embryonic stem cells from preimplantation rabbit embryos. Mol Reprod Dev 36: 424–433.

    Google Scholar 

  • Hadlaczky G (2001) Satellite DNA-based artificial chromosomes for use in gene therapy. Curr Opin Mol Ther 3: 125–132.

    Google Scholar 

  • Hammer RE, Pursel VG, Rexroad Jr CE, Wall RJ, Bolt DJ, Ebert KM et al. (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315: 680–683.

    Google Scholar 

  • Hiripi L, Makovics F, Halter R, Baranyi M, Paul D, Carnwath JW et al. (2003) Expression of active human blood clotting factor VIII in the mammary gland of transgenic rabbits. DNA and Cell Biol 22: 41–45.

    Google Scholar 

  • Hoeg JM, Santamarina-Fojo S, Berard AM, Cornhill JF, Herderick EE, Feldman SH et al. (1996a) Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proc Natl Acad Sci USA 93: 11448–11453.

    Google Scholar 

  • Hoeg JM, Vaisman BL, Demosky Jr SJ, Meyn SM, Talley GD, Hoyt Jr RF et al. (1996b) Lecithin:cholesterol acyltransferase overexpression generates hyperalpha-lipoproteinemia and a nonatherogenic lipoprotein pattern in transgenic rabbits. J Biol Chem 271: 4396–4402.

    Google Scholar 

  • Hoeg JM, Kauffmann RD, Herderick E, Demosky SJ, Evans W and Brousseau ME (1998) Lecithin:cholesterol acyltransferase requires functional LDL receptors to prevent atherosclerosis. Circulation 98: I–464.

    Google Scholar 

  • Houdebine LM (2002) The methods to generate transgenic animals and to control transgene expression. J Biotechnol 98: 145–160.

    Google Scholar 

  • Huang Y, Schwendner SW, Rall Jr SC, Sanan DA and Mahley RW (1997) Apolipoprotein E2 transgenic rabbits. Modulation of the type III hyperlipoproteinemic phenotype by estrogen and occurrence of spontaneous atherosclerosis. J Biol Chem 272: 22685–22694.

    Google Scholar 

  • Ishida I, Tomizuka K, Yoshida H, Tahara T, Takahashi N, Ohguma A et al. (2002) Production of human monoclonal and polyclonal antibodies in TransChromo animals. Cloning Stem Cells 4: 91–102.

    Google Scholar 

  • Jadresic A, Banks LM, Child DF, Diamand L, Doyle FH, Fraser TR et al. (1982) The acromegaly syndrome. Q JMed 202: 189–204.

    Google Scholar 

  • Jaenicke T, Diederich KW, Haas W, Schleich J, Lichter P, Pfordt M et al. (1990) The complete sequence of the human beta-myosin heavy chain gene and a comparative analysis of its product. Genomics 8: 194–206.

    Google Scholar 

  • James J, Sanbe A, Yager K, Martin L, Klevitsky R and Robbins J (2000) Genetic manipulation of the rabbit heart via transgenesis. Circulation 101: 1715–1721.

    Google Scholar 

  • James J, Zhang Y, Wright K, Witt S, Glascock E, Osinska H et al. (2002) Transgenic rabbits expressing mutant essential light chain do not develop hypertrophic cardiomyopathy. J Mol Cell Cardiol 34: 873–882.

    Google Scholar 

  • Jennes R (1974) The composition of milk. In: Lactation: A Comprehensive Treatise. (pp. 3–105) Academic Press, New York.

    Google Scholar 

  • Kavinsky CJ, Umeda PK, Levin JE, Sinha AM, Nigro JM, Jakovcic S et al. (1984) Analysis of cloned mRNA sequences encoding subfragment 2 and part of subfragment 1 of alpha-and beta-myosin heavy chains of rabbit heart. J Biol Chem 259: 2775–2781.

    Google Scholar 

  • Kazazian HH, Tuddenham EGD and Antonarakis S (1995) Haemophilia A and parahaemophilia: deficiencies of factor VIII and V. In: Scriver C, Beaudet A, Sly W and Valle E (eds), Medical and Metabolic Basis of Inherited Disease. (pp. 3241–3268) McGraw-Hill, New York.

    Google Scholar 

  • Knight KL, Spieker-Polet H, Kazdin DS and Oi VT (1988) Transgenic rabbits with lymphocytic leukemia induced by the c-myc oncogene fused with the immunoglobulin heavy chain enhancer. Proc Natl Acad Sci USA 85: 3130–3134.

    Google Scholar 

  • Korhonen VP, Tolvanen M, Hyttinen JM, Uusi-Oukari M, Sinervirta R, Alhonen L et al. (1997) Expression of bovine betalactoglobulin/ human erythropoietin fusion protein in the milk of transgenic mice and rabbits. Eur J Biochem 245: 482–489.

    Google Scholar 

  • Kozireva S, Konicheva V, Murovska M, Baurin V, Shayakhmetov D, Ernst L et al. (1996) Investigation of an antisense RNA gene effect on the reproduction of the bovine leukemia virus in vivo. Transgenics 12: 99–109.

    Google Scholar 

  • La Ville A, Turner PR, Pittilo RM, Martini S, Marenah CB, Rowles PM et al. (1987) Hereditary hyperlipidemia in the rabbit due to overproduction of lipoproteins. I. Biochemical studies. Arteriosclerosis 7: 105–112.

    Google Scholar 

  • Langford GA, Cozzi E, Yannoutsos N, Lancaster R, Elsome K, Chen P et al. (1996) Production of pigs transgenic for human regulators of complement activation using YAC technology. Transplant Proc 28: 862–863.

    Google Scholar 

  • Larrick JW and Thomas DW (2001) Producing proteins in transgenic plants and animals. Curr Opin Biotechnol 4: 411–418.

    Google Scholar 

  • Lebuffe G, Boullier A, Tailleux A, Delfly B, Dupuis B, Fruchart JC et al. (1997) Endothelial derived vasorelaxation is impaired in human APO A-I transgenic rabbits. Biochem Biophys Res Commun 241: 205–211.

    Google Scholar 

  • Limonta JM, Castro FO, Martinez R, Puentes P, Ramos B, Aguilar A et al. (1995) Transgenic rabbits as bioreactors for the production of human growth hormone. J Biotechnol 40: 49–58.

    Google Scholar 

  • Lubon H and Paleyanda RK (1997) Vitamin K-dependent protein production in transgenic animals. Thromb Haemost 78: 532–536.

    Google Scholar 

  • Lubon H and Palmer C (2000) Transgenic animal bioreactors - where we are. Transgenic Res 9: 301–304.

    Google Scholar 

  • Mackness M, Boullier A, Hennuyer N, Mackness B, Hall M, Tailleux A et al. (2000) Paraoxonase activity is reduced by a proatherosclerotic diet in rabbits. Biochem Biophys Res Commun 269: 232–236.

    Google Scholar 

  • Maher VM and Brown BG (1995) Lipoprotein (a) and coronary heart disease. Curr Opin Lipidol 6: 229–235.

    Google Scholar 

  • Marian AJ, Wu Y, Lim DS, McCluggage M, Youker K, Yu QT et al. (1999) A transgenic rabbit model for human hypertrophic cardiomyopathy. J Clin Invest 104: 1683–1692.

    Google Scholar 

  • Massoud M, Attal J, Thepot D, Pointu H, Stinnakre MG, Theron MC et al. (1996) The deleterious effects of human erythropoietin 552 gene driven by the rabbit whey acidic protein gene promoter in transgenic rabbits. Reprod Nutr Dev 36: 555–563.

    Google Scholar 

  • Matlashewski G, Schneider J, Banks L, Jones N, Murray A and Crawford L (1987) Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells. EMBO J 6: 1741–1746.

    Google Scholar 

  • McCune J, Kaneshima H, Krowka J, Namikawa R, Outzen H, Peault B et al. (1991) The SCID-hu mouse: a small animal model for HIV infection and pathogenesis. Annu Rev Immunol 9: 399–429.

    Google Scholar 

  • McGrane MM, de Vente J, Yun J, Bloom J, Park E, Wynshaw-Boris A et al. (1988) Tissue-specific expression and dietary regulation of a chimeric phosphoenolpyruvate carboxykinase/bovine growth hormone gene in transgenic mice. J Biol Chem 263: 11443–11451.

    Google Scholar 

  • McKee C, Gibson A, Dalrymple M, Emslie L, Garner I and Cottingham I (1998) Production of biologically active salmon calcitonin in the milk of transgenic rabbits. Nat Biotechnol 16: 647–651.

    Google Scholar 

  • Montoliu L (2002) Gene transfer strategies in animal transgenesis. Cloning Stem Cells 4: 39–46.

    Google Scholar 

  • Munir MI, Rossiter BJ and Caskey CT (1990) Antisense RNA production in transgenic mice. Somat Cell Mol Genet 16: 383–394.

    Google Scholar 

  • Murovska M, Kozireva S and Tomsone V (2001) Antisense RNAmediated inhibition of bovine leukemia virus replication in transgenic rabbits. Exp Oncol 23: 51–56.

    Google Scholar 

  • Nagueh SF, Kopelen HA, Lim DS, Zoghbi WA, Quinones MA, Roberts R et al. (2000) Tissue Doppler imaging consistently detects myocardial contraction and relaxation abnormalities, irrespective of cardiac hypertrophy, in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 102: 1346–1350.

    Google Scholar 

  • Nagueh SF, Bachinski LL, Meyer D, Hill R, Zoghbi WA, Tam JW et al. (2001) Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation 104: 128–130.

    Google Scholar 

  • Niemann H, Halter R, Carnwath JW, Herrmann D, Lemme E and Paul D (1999) Expression of human blood clotting factor VIII in the mammary gland of transgenic sheep. Transgenic Res 8: 237–247.

    Google Scholar 

  • Omar BA, Flores SC and McCord JM(1992) Superoxide dismutase: pharmacological developments and applications. Adv Pharmacol 23: 109–161.

    Google Scholar 

  • Overturf ML and Loose-Mitchell DS (1992) In vivo model systems: the choice of the experimental animal model for analysis of lipoproteins and atherosclerosis. Curr Opin Lipidol 3: 179–185.

    Google Scholar 

  • Paleyanda RK, Velander WH, Lee TK, Scandella DH, Gwazdauskas FC, Knight JW et al. (1997) Transgenic pigs produce functional human factor VIII in milk. Nat Biotechnol 15: 971–975.

    Google Scholar 

  • Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC et al. (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300: 611–615.

    Google Scholar 

  • Peng X, Olson RO, Christian CB, Lang CM and Kreider JW (1993) Papillomas and carcinomas in transgenic rabbits carrying EJras DNA and cottontail rabbit papillomavirus DNA. J Virol 67: 1698–1701.

    Google Scholar 

  • Peng X, Lang CM and Kreider JW (1995) Methylation of cottontail rabbit papillomavirus DNA and tissue-specific expression in transgenic rabbits. Virus Res 35: 101–108.

    Google Scholar 

  • Peng X, Griffith JW, Han R, Lang CM and Kreider JW (1999) Development of keratoacanthomas and squamous cell carcinomas in transgenic rabbits with targeted expression of EJras oncogene in epidermis. Am J Pathol 155: 315–324.

    Google Scholar 

  • Peng X, Griffith JW and Lang CM (2001) Reinitiated expression of EJras transgene in targeted epidermal cells of transgenic rabbits by cottontail rabbit papillomavirus infection. Cancer Lett 171: 193–200.

    Google Scholar 

  • Pinkert CA, Galbreath EJ, Yang CW and Striker LJ (1994) Liver, renal and subcutaneous histopathology in PEPCK-bGH transgenic pigs. Transgenic Res 3: 401–405.

    Google Scholar 

  • Raju TS, Briggs JB, Borge SM and Jones AJ (2000) Species-specific variation in glycosylation of IgG: evidence for the speciesspecific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10: 477–486.

    Google Scholar 

  • Rodriguez A, Castro FO, Aguilar A, Ramos B, Del Barco DG, Lleonart R et al. (1995) Expression of active human erythropoietin in the mammary gland of lactating transgenic mice and rabbits. Biol Res 28: 141–153.

    Google Scholar 

  • Rogart JN, Barrach HJ and Chichester CO (1999) Articular collagen degradation in the Hulth-Telhag model of osteoarthritis. Osteoarthritis Cartilage 7: 539–547.

    Google Scholar 

  • Rouy D, Duverger N, Lin SD, Emmanuel F, Houdebine LM, Denefle P et al. (1998) Apolipoprotein(a) yeast artificial chromosome transgenic rabbits. Lipoprotein(a) assembly with human and rabbit apolipoprotein B. J Biol Chem 273: 1247–1251.

    Google Scholar 

  • Rudolph NS (1999) Biopharmaceutical production in transgenic livestock. Trends Biotechnol 17: 367–374.

    Google Scholar 

  • Schoonjans L, Albright GM, Li JL, Collen D and Moreadith RW (1996) Pluripotential rabbit embryonic stem (ES) cells are capable of forming overt coat color chimeras following injection into blastocysts. Mol Reprod Dev 45: 439–443.

    Google Scholar 

  • Sethupathi P, Spieker-Polet H, Polet H, Yam PC, Tunyaplin C and Knight KL (1994) Lymphoid and non-lymphoid tumors in E kappa-myc transgenic rabbits. Leukemia 8: 2144–2155.

    Google Scholar 

  • Shen J, Kuhn H, Petho-Schramm A and Chan L (1995) Transgenic rabbits with the integrated human 15-lipoxygenase gene driven by a lysozyme promoter: macrophage-specific expression and variable positional specificity of the transgenic enzyme. FASEB J 9: 1623–1631.

    Google Scholar 

  • Snyder BW, Vitale J, Milos P, Gosselin J, Gillespie F, Ebert K et al. (1995) Developmental and tissue-specific expression of human CD4 in transgenic rabbits. Mol Reprod Dev 40: 419–428.

    Google Scholar 

  • Spieker-Polet H, Sethupathi P, Yam PC and Knight KL (1995) Rabbit monoclonal antibodies: generating a fusion partner to produce rabbit-rabbit hybridomas. Proc Natl Acad Sci USA 92: 9348–9352.

    Google Scholar 

  • Stoddart CA, Rabin L, Hincenbergs M, Moreno M, Linquist-Stepps V, Leeds JM et al. (1998) Inhibition of human immunodeficiency virus type 1 infection in SCID-hu Thy/Liv mice by the Gquartet-forming oligonucleotide ISIS 5320. Antimicrob Agents Chemother 42: 2113–2115.

    Google Scholar 

  • Strömqvist M, Houdebine M, Andersson JO, Edlund A, Johansson T, Viglietta C et al. (1997) Recombinant human extracellular superoxide dismutase produced in milk of transgenic rabbits. Transgenic Res 6: 271–278.

    Google Scholar 

  • Taboit-Dameron F, Malassagne B, Viglietta C, Puissant C, Leroux-Coyau M, Chereau C et al. (1999) Association of the 5_HS4 sequence of the chicken beta-globin locus control region with human EF1 alpha gene promoter induces ubiquitous and high ex553 pression of human CD55 and CD59 cDNAs in transgenic rabbits. Transgenic Res 8: 223–235.

    Google Scholar 

  • Utermann G, Hoppichler F, Dieplinger H, Seed M, Thompson G and Boerwinkle E (1989) Defects in the low density lipoprotein receptor gene affect lipoprotein (a) levels: multiplicative interaction of two gene loci associated with premature atherosclerosis. Proc Natl Acad Sci USA 86: 4171–4174.

    Google Scholar 

  • Van den Hout H, Reuser AJ, Vulto AG, Loonen MC, Cromme-Dijkhuis A and Van der Ploeg AT (2000) Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet 356: 397–398.

    Google Scholar 

  • Van den Hout JM, Reuser AJ, de Klerk JB, Arts WF, Smeitink JA and Van der Ploeg AT (2001) Enzyme therapy for Pompe disease with recombinant human alpha-glucosidase from rabbit milk. J Inherit Metabiol Dis 24: 266–274.

    Google Scholar 

  • Van Haeringen WA, Den Bieman M, Gillissen GF, Lankhorst AE, Kuiper MT, Van Zutphen LF and Van Lith HA (2001) Mapping of a QTL for serum HDL cholesterol in the rabbit using AFLP technology. J Hered 92: 322–326.

    Google Scholar 

  • Viglietta C, Massoud M and Houdebine LM (1997) The generation of transgenic rabbits. In: Houdebine LM (ed), Transgenic Animals: Generation and Use. (pp. 3/1–3/3) Harwood, New York.

    Google Scholar 

  • Watanabe Y (1980) Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Atherosclerosis 36: 261–268.

    Google Scholar 

  • Weidle UH, Lenz H and Brem G (1991) Genes encoding a mouse monoclonal antibody are expressed in transgenic mice, rabbits and pigs. Gene 98: 185–191.

    Google Scholar 

  • Wolf E, Jehle PM, Weber MM, Sauerwein H, Daxenberger A, Breier BH et al. (1997) Human insulin-like growth factor I (IGF-I) produced in the mammary glands of transgenic rabbits: yield, receptor binding, mitogenic activity, and effects on IGF-binding proteins. Endocrinology 138: 307–313.

    Google Scholar 

  • Yamanaka S, Balestra ME, Ferrell LD, Fan J, Arnold KS, Taylor S et al. (1995) Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc Natl Acad Sci USA 92: 8483–8487.

    Google Scholar 

  • Zinovieva N, Lassnig C, Schams D, Besenfelder U, Wolf E, Muller S et al. (1998) Stable production of human insulin-like growth factor 1 (IGF-1) in the milk of hemi-and homozygous transgenic rabbits over several generations. Transgenic Res 7: 437–447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bősze, Z., Hiripi, L., Carnwath, J. et al. The Transgenic Rabbit as Model for Human Diseases and as a Source of Biologically Active Recombinant Proteins. Transgenic Res 12, 541–553 (2003). https://doi.org/10.1023/A:1025816809372

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025816809372

Navigation