Skip to main content
Log in

Parvalbumin in respiratory neurons of the ventrolateral medulla of the adult rat

  • Published:
Journal of Neurocytology

Abstract

A column of parvalbumin immunoreactive neurons is closely associated with the location of respiratory neurons in the ventrolateral medulla of the rat. The majority (66%) of bulbospinal neurons in the medullary ventral respiratory column (VRC) that were retrogradely labeled by tracer injections in the phrenic nucleus were also positive for parvalbumin. In contrast, only 18.8% of VRC neurons retrogradely labeled after a tracer injection in the VRC, also expressed parvalbumin. The average cross-sectional area of VRC neurons retrogradely labeled after VRC injections was 193.8 μm2 ± 6.6 SE. These were significantly smaller than VRC parvalbumin neurons (271.9 μm2 ± 12.3 SE). Parvalbumin neurons were found in the Bötzinger Complex, the rostral ventral respiratory group (VRG), and the caudal VRG, areas which all contribute to the bulbospinal projection. In contrast, parvalbumin neurons were sparse or absent in the preBötzinger Complex and in the vicinity of the retrotrapezoid nucleus, areas that have few bulbospinal projections. Parvalbumin was rarely colocalized within Neurokinin-1 receptor positive (NK1R) VRC neurons, which are found in the preBötzinger complex and in the anteroventral part of the rostral VRG. Parvalbumin neurons in the Bötzinger Complex and rostral VRG help define the rostrocaudal extent of these regions. The absence of parvalbumin neurons from the intervening preBötzinger complex also helps establish the boundaries of this region. Regional boundaries described in this manner are in good agreement with earlier physiological and anatomical studies. Taken together, the distributions of parvalbumin, NK1R and bulbospinal neurons suggest that the rostral VRG may be subdivided into distinct, anterodorsal, anteroventral, and posterior subdivisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alheid, G. F., Hayashi, F., Miller, J. F. & McCrimmon, D. R. (2000) Retrograde labeling of parvalbumin neurons in the ventral medullary respiratory group in the rat. Soc Neurosci Abs #384.4.

  • Alheid, G. F., Gray, P. A., Habtemarkos, R., Feldman, J. L. & McCrimmon, D. R. (2001) Calcium binding proteins, NK1 receptors, and compartments in the ventral respiratory group of the rat. Soc Neurosci Abs #633.1.

  • Ballanyi, K., Onimaru, H. & Homma, I. (1999) Respiratory network function in the isolated brainstemspinal cord of newborn rats. Prog Neurobiol 59, 583–634.

    PubMed  Google Scholar 

  • Baimbridge, K. G., Celio, M. R. & Rogers, J. H. (1992) Calcium-binding proteins in the nervous-system. Trends in Neurosciences 15, 303–308.

    PubMed  Google Scholar 

  • Bianchi, A. L., Denavit-SaubiÉ, M. & Champagnat, J. (1995) Central control of breathing in mammals—Neuronal circuitry, membraneproperties, and neurotransmitters. Physiol Rev 75, 1–45.

    PubMed  Google Scholar 

  • Blessing, W. W. (1990) Distribution of glutamic decarboxylase-containing neurons in rabbit medulla oblongata with attention to intramedullary and spinal projections. Neurosci 37, 171–185.

    PubMed  Google Scholar 

  • Bryant, T. H., Yoshida, S., de Castro, D. & Lipski, J. (1993) Expiratory neurons of the Bötzinger Complex in the rat: A morphological study following intracellular labeling with biocytin. J Comp Neurol 335, 267–282.

    PubMed  Google Scholar 

  • Caillard, O., Moreno, H., Schwaller, B., Llano, I., Celio, M. R. & Marty, A. (2000) Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci USA 97, 13372–13377.

    PubMed  Google Scholar 

  • Celio, M. R. & Heizmann, C. W. (1981) Calciumbinding protein parvalbumin as a neuronal marker. Nature 293, 300–302.

    PubMed  Google Scholar 

  • Celio, M. R. (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neurosci 35, 375–475.

    Article  Google Scholar 

  • Connelly, C. A., Ellenberger, H. H. & Feldman, J. L. (1990) Respiratory activity in retrotrapezoid nucleus in cat. Am J Physiol 258, L33–L44.

    PubMed  Google Scholar 

  • Connelly, C. A., Dobbins, E. G. & Feldman, J. L. (1992) Pre-Bötzinger complex in cats: Respiratory neuronal discharge patterns. Brain Res 590, 337–340.

    PubMed  Google Scholar 

  • Cox, M. & Halliday, G. M. (1993) Parvalbumin as an anatomical marker for discrete subregions of the ambiguus complex in the rat. Neurosci Lett 160, 101–105.

    PubMed  Google Scholar 

  • Dobbins, E. G. & Feldman, J. L. (1994) Brainstem network controlling descending drive to phrenic motoneurons in rat. J Comp Neurol 347, 64–86.

    PubMed  Google Scholar 

  • Ellenberger, H. H. & Feldman, J. L. (1988) Monosynaptic transmission of respiratory drive to phrenic motoneurons from brainstem bulbospinal neurons in rats. J Comp Neurol 269, 47–57.

    PubMed  Google Scholar 

  • Ellenberger, H. H. & Feldman, J. L. (1990) Subnuclear organization of the lateral tegmental field of the rat. I: Nucleus ambiguus and ventral respiratory group. J Comp Neurol 294, 202–211.

    PubMed  Google Scholar 

  • Ellenberger, H. H., Feldman, J. L. & Zhan, W. Z. (1990) Subnuclear organization of the lateral tegmental field of the rat. II: Catecholamine neurons and ventral respiratory group. J Comp Neurol 294, 212–222.

    PubMed  Google Scholar 

  • Ellenberger, H. H. (1999) Distribution of bulbospinal gamma-aminobutyric acid-synthesizing neurons of the ventral respiratory group of the rat. J Comp Neurol 411, 130–144.

    PubMed  Google Scholar 

  • Endo, T., Takazawa, K., Kobayashi, S. & Onaya, T. (1986) Immunochemical and immunohistochemical localization of parvalbumin in rat nervous tissues. J Neurochem 46, 892–898.

    PubMed  Google Scholar 

  • Ezure, K. (1990) Synaptic connections between medullary respiratory neurons and considerations on the genesis of respiratory rhythm. Progr Neurobiol 35, 429–450.

    PubMed  Google Scholar 

  • Ezure, K., Manabe, M. & Yamada, H. (1988) Distribution of medullary respiratory neurons in the rat. Brain Res 455, 262–270.

    PubMed  Google Scholar 

  • Feldman, J. L. (1986) Neurophysiology of breathing in mammals. In Handbook of Physiology, The Nervous System, Sect. 1. pp. 463–524.Washington: American Physiological Society.

    Google Scholar 

  • Feldman, J. L., Mitchell, G. S. & Nattie, E. E. (2003) Breathing: Rhythmicity, plasticity, chemosensitivity. Annual Rev. Neurosci 26, 239–266.

    Article  Google Scholar 

  • Feldman, J. L. & McCrimmon, D. R. (2003) Neural control of breathing. In Fundamental Neuroscience (edited by Squire, L. R., Bloom, F. E., McConnell, S. K., Roberts, J. L., Spitzer, N. C. & Zigmond, M. J.) pp. 967–990. San Diego: Academic Press/Elsevier Science.

    Google Scholar 

  • Feldman, J. L., McCrimmon, D. R. & Speck, D. F. (1984) Effect of synchronous activation of medullary inspiratory bulbo-spinal neurones on phrenic nerve discharge in cat. J Physiol 347, 241–254.

    PubMed  Google Scholar 

  • Frermann, D., Keller, B. U. & Richter, D. W. (1999) Calcium oscillations in rhythmically active respiratory neurones in the brainstem of the mouse. J Physiol 515, 119–131.

    PubMed  Google Scholar 

  • Goodchild, A. K., Llewellyn-Smith, I. J., Sun, Q.-J., Chalmers, J., Cunningham, A. M. & Pilowsky, P. M. (2000) Calbindin-immunoreactive neurons in the reticular formation of the rat brainstem: Catecholamine content and spinal projections. J Comp Neurol 424, 547–562.

    PubMed  Google Scholar 

  • Grace, A. A. & Llinas, R. (1985) Morphological artifacts induced in intracellularly stained neurons by dehydration: Circumvention using rapid dimethyl sulfoxide clearing. Neuroscience 16, 461–475.

    PubMed  Google Scholar 

  • Gray, P. A., Rekling, J. C., Bocchiaro, C. M. & Feldman, J. L. (1999) Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preBötzinger complex. Science 286, 1566–1568.

    PubMed  Google Scholar 

  • Gray, P. A., Janczewski, W. A., Mellen, N., McCrimmon, D. R. & Feldman, J. L. (2001) Normal breathing requires preBötzinger complex neurokinin-1 receptor-expressing neurons. Nat Neurosci 4, 927–930.

    PubMed  Google Scholar 

  • Guyenet, P. G. & Wang, H. (2001) Pre-Bötzinger neurons with preinspiratory discharges “in vivo” express NK1 receptors in the rat. J Neurophysiol 86, 438–446.

    PubMed  Google Scholar 

  • Guyenet, P. G., Sevigny, C. P., Weston, M. C. & Stornetta, R. L. (2002) Neurokinin-1 receptorexpressing cells of the ventral respiratory group are functionally heterogeneous and predominantly glutamatergic. J Neurosci 22, 3806–3816.

    PubMed  Google Scholar 

  • Hayashi, F., Coles, S. K. & McCrimmon, D. R. (1996) Respiratory neurons mediating the Breuer-Hering reflex prolongation of expiration in rat. J Neurosci 16, 6526–6536.

    PubMed  Google Scholar 

  • Itoh, K., Konishi, A., Nomura, S., Mizuno, N., Nakamura, Y. & Sugimoto, T. (1979) Application of coupled oxidation reaction to electron microscopic demonstration of horseradish peroxidase: Cobaltglucose oxidase method. Brain Research 175, 341–346.

    PubMed  Google Scholar 

  • Janczewski, W. A., Onimaru, H., Homma, I. & Feldman, J. L. (2002) Opioid-resistant respiratory pathway from the preinspiratory neurones to abdominal muscles: In vivo and in vitro study in the newborn rat. J. Physiol. 545, 1017–1026.

    PubMed  Google Scholar 

  • Johnson, S. M., Smith, J. C., Funk, G. D. & Feldman, J. L. (1994) Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. J Neurophysiol 72, 2598–2608.

    PubMed  Google Scholar 

  • Johnson, S. M., Koshiya, N. & Smith, J. C. (2001) Isolation of the kernel for respiratory rhythm generation in a novel preparation: The pre-Bötzinger complex “island”. J Neurophysiol 85, 1772–1776.

    PubMed  Google Scholar 

  • Koshiya, N. & Smith, J. C. (1999) Neuronal pacemaker for breathing visualized in vitro. Nature 400, 360–363.

    PubMed  Google Scholar 

  • Lips, M. B. & Keller, B. U. (1998) Endogenous calcium buffering in motoneurones of the nucleus hypoglossus from mouse. J Physiol 511, 105–117.

    PubMed  Google Scholar 

  • Lips, M. B. & Keller, B. U. (1999) Activity-related calcium dynamics in motoneurons of the nucleus hypoglossus from mouse. J Neurophysiol 82, 2936–2946.

    PubMed  Google Scholar 

  • Lipski, J., Zhang, X., Kruszewska, B. & Kanjhan, R. (1994) Morphological study of long axonal projections of ventral medullary inspiratory neurons in the rat. Brain Res 640, 171–184.

    PubMed  Google Scholar 

  • Liu, Y. Y., Ju, G. & Wong-Riley, M. T. (2001) Distribution and colocalization of neurotransmitters and receptors in the pre-Bötzinger complex of rats. J Appl Physiol 91, 1387–1395.

    PubMed  Google Scholar 

  • Liu, Q. & Wong-Riley, M. T. (2002) Postnatal expression of neurotransmitters, receptors, and cytochrome oxidase in the rat pre-Bötzinger complex. J Appl Physiol 92, 923–934.

    PubMed  Google Scholar 

  • Livingston, C. A. & Berger, A. J. (1989) Immunocytochemical localization of GABA in neurons projecting to the ventrolateral nucleus of the solitary tract. Brain Res 494, 143–150.

    PubMed  Google Scholar 

  • Makeham, J. M., Goodchild, A. K. & Pilowsky, P. M. (2001) NK1receptor and the ventral medulla of the rat: Bulbospinalandcatecholaminergic neurons. NeuroReport 12, 3663–3667.

    PubMed  Google Scholar 

  • McCrimmon, D. R., Feldman, J. L. & Speck, D. F. (1986) Respiratory motoneuronal activity is altered by injections of picomoles of glutamate into cat brain stem. J Neurosci 6, 2384–2392.

    PubMed  Google Scholar 

  • McCrimmon, D. R., Ramirez, J. M., Alford, S. & Zuperku, E. J. (2000) Unraveling the mechanism for respiratory rhythm generation. Bioessays 22, 6–9.

    PubMed  Google Scholar 

  • Mellen, N. M., Janczewski, W. A., Bocchiaro, C. M. & Feldman, J. L. (2003) Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation. Neuron 37, 821–826.

    PubMed  Google Scholar 

  • Monnier, A., Alheid, G. F. & McCrimmon, D. R. (2003) Defining ventral medullary respiratory compartments with a glutamate receptor agonist in the rat. J Physiol 548, 859–874.

    PubMed  Google Scholar 

  • NÚÑez-Abades, P. A., Pasaro, R. & Bianchi, A. L. (1991) Localization of respiratory bulbospinal and propriobulbar neurons in the region of the nucleus ambiguus of the rat. Brain Res 568, 165–172.

    PubMed  Google Scholar 

  • NÚÑez-Abades, P. A., Morillo, A. M. & Pasaro, R. (1993) Brainstem connections of the rat ventral respiratory subgroups: Afferent projections. J Auton Nerv Syst 42, 99–118.

    PubMed  Google Scholar 

  • Ogilvie, M. D., Gottschalk, A., Anders, K., Richter, D. W. & Pack, A. I. (1992) A network model of respiratory rhythmogenesis. Am J Physiol 263, R962–R975.

    PubMed  Google Scholar 

  • Okazaki, M., Takeda, R., Haji, A. & Yamazaki, H. (2001) Glutamic acid decarboxylase-immunoreactivity of bulbar respiratory neurons identified by intracellular recording and labeling in rats. Brain Res 914, 34–47.

    PubMed  Google Scholar 

  • Onai, T. & Miura, M. (1986) Projections of supraspinal structures to the phrenic motor nucleus in cats studied by a horseradish peroxidase microinjection method. J Auton Nerv Syst 16, 61–77.

    PubMed  Google Scholar 

  • Onai, T., Saji, M. & Miura, M. (1987) Projections of supraspinal structures to the phrenic motor nucleus in rats studied by a horseradish peroxidase microinjection method. J Auton Nerv Syst 21, 233–239.

    PubMed  Google Scholar 

  • Onimaru, H. (1995) Studies of the respiratory center using isolated brainstem-spinal cord preparations. Neurosci Res 21, 183–190.

    PubMed  Google Scholar 

  • Onimaru, H., Arata, A. & Homma, I. (1987) Localization of respiratory rhythm-generating neurons in the medulla of brainstem-spinal cord preparations from newborn rats. Neurosci Lett 78, 151–155.

    PubMed  Google Scholar 

  • Onimaru, H., Arata, A. & Homma, I. (1997) Neuronal mechanisms of respiratory rhythm generation: An approach using in vitro preparation. Jpn. J. Physiol. 47, 385–403.

    PubMed  Google Scholar 

  • Onimaru, H. & Homma, I. (2003) A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23, 1478–1486.

    PubMed  Google Scholar 

  • Otake, K., Sasaki, H., Mannen, H. & Ezure, K. (1987) Morphology of expiratory neurons of the Bötzinger complex: An HRP study in the cat. J Comp Neurol 258, 565–579.

    PubMed  Google Scholar 

  • Paxinos, G., Kus, L., Ashwell, K. W. S. & Watson, C. (1999a) Chemoarchitectonic Atlas of The Rat Forebrain. San Diego: Academic Press.

    Google Scholar 

  • Paxinos, G. C. P., Wang, H. & Wang, P. Y. (1999b) Chemoarchitectonic Atlas of The Rat Brainstem. San Diego: Academic Press.

    Google Scholar 

  • Pearce, R. A., Stornetta, R. L. & Guyenet, P. G. (1989) Retrotrapezoid nucleus in the rat. Neurosci Lett 101, 138–142.

    PubMed  Google Scholar 

  • Pierrefiche, O., Champagnat, J. & Richter, D. W. (1995) Calcium-dependent conductances control neurones involved in termination of inspiration in cats. Neurosci Lett 184, 101–104.

    PubMed  Google Scholar 

  • Pilowsky, P. M., Jiang, C. & Lipski, J. (1990) An intracellular study of respiratory neurons in the rostral ventrolateral medulla of the rat and their relationship to catecholamine-containing neurons. J Comp Neurol 301, 604–617.

    PubMed  Google Scholar 

  • Plogmann, D. & Celio, M. R. (1993) Intracellular concentration of parvalbumin in nerve cells. Brain Res 600, 273–279.

    PubMed  Google Scholar 

  • Portillo, F. & Pasaro, R. (1988) Location of bulbospinal neurons and of laryngeal motoneurons within the nucleus ambiguus of the rat and cat by means of retrograde fluorescent labelling. J Anat 159, 11–18.

    PubMed  Google Scholar 

  • Ramirez, J. M. & Richter, D. W. (1996) The neuronal mechanisms of respiratory rhythm generation. Curr Opin Neurobiol 6, 817–825.

    PubMed  Google Scholar 

  • Reiner, A., Medina, L., Figueredo-Cardenas, G. & Anfinson, S. (1995) Brain-stem motoneuron pools that are selectively resistant in amyotrophic-lateralsclerosis are preferentially enriched in parvalbumin—evidence from monkey brain-stem for a calciummediated mechanism in sporadic ALS. Exp Neurol 131, 239–250.

    PubMed  Google Scholar 

  • Rekling, J. C. & Feldman, J. L. (1998) PreBötzinger complex and pacemaker neurons: Hypothesized site and kernel for respiratory rhythm generation. Annu Rev Physiol 60, 385–405.

    PubMed  Google Scholar 

  • Richter, D. W., Champagnat, J., Jacquin, T. & Benacka, R. (1993) Calcium currents and calciumdependent potassium currents in mammalian medullary respiratory neurones. J Physiol 470, 23–33.

    PubMed  Google Scholar 

  • Rybak, I. A., Paton, J. F. & Schwaber, J. S. (1997a) Modeling neural mechanisms for genesis of respiratory rhythm and pattern. I. Models of respiratory neurons. J Neurophysiol 77, 1994–2006.

    PubMed  Google Scholar 

  • Rybak, I. A., Paton, J. F. & Schwaber, J. S. (1997b) Modeling neural mechanisms for genesis of respiratory Parvalbumin in respiratory neurons 717 rhythm and pattern. II. Network models of the central respiratory pattern generator. J Neurophysiol 77, 2007–2026.

    PubMed  Google Scholar 

  • Saito, Y., Tanaka, I. & Ezure, K. (2002) Morphology of the decrementing expiratory neurons in the brainstem of the rat. Neurosci Res 44, 141–153.

    PubMed  Google Scholar 

  • Schreihofer, A. M., Stornetta, R. L. & Guyenet, P. G. (1999) Evidence for glycinergic respiratory neurons: Bötzinger neurons express mRNA for glycinergic transporter 2. J Comp Neurol 407, 583–597.

    PubMed  Google Scholar 

  • SchÖz, A. & Palm, G. (1989) Density of neurons and synapses in the cerebral cortex of the mouse. J Comp Neurol 286, 442–455.

    PubMed  Google Scholar 

  • Schwarzacher, S. W., Wilhelm, Z., Anders, K. & Richter, D. W. (1991) The medullary respiratory network in the rat. J Physiol 435, 631–644.

    PubMed  Google Scholar 

  • Schwarzacher, S. W., Smith, J. C. & Richter, D. W. (1995) Pre-Bötzinger complex in the cat. J Neurophysiol 73, 1452–1461.

    PubMed  Google Scholar 

  • Skoglund, T. S., Pascher, R. & Berthold, C. H. (1996) Aspects of the quantitative analysis of neurons in the cerebral cortex. J Neurosci Meth 70, 201–210.

    Article  Google Scholar 

  • Smith, J. C., Morrison, D. E., Ellenberger, H. H., Otto, M. R. & Feldman, J. L. (1989) Brainstem projections to the major respiratory neuron populations in the medulla of the cat. J Comp Neurol 281, 69–96.

    PubMed  Google Scholar 

  • Smith, J. C., Ellenberger, H. H., Ballanyi, K., Richter, D. W. & Feldman, J. L. (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254, 726–729.

    PubMed  Google Scholar 

  • Smith, J. C., Butera, R. J., Koshiya, N., del Negro, C., Wilson, C. G. & Johnson, S. M. (2000) Respiratory rhythm generation in neonatal and adult mammals: The hybrid pacemaker-network model. Respir Physiol 122, 131–147.

    PubMed  Google Scholar 

  • Solomon, I. C., Edelman, N. H., & Neubauer, J. A. (1999) Patterns of phrenic motor output evoked by chemical stimulation of neurons located in the pre-Bötzinger complex in vivo. J Neurophysiol 81, 1150–1161.

    PubMed  Google Scholar 

  • Solomon, I. C., Halat, T. J., El-Maghrabi, R. & O'Neal, M. H. 3rd (2001) Differential expression of connexin26andconnexin32 in the pre-Bötzinger complex of neonatal and adult rat. J Comp Neurol 440, 12–19.

    PubMed  Google Scholar 

  • Sterio, D. C. (1984) The unbiased estimation ofnumberand sizes of arbitrary particles using the dissector. J Microsc 134, 127–136.

    PubMed  Google Scholar 

  • Stornetta, R. L., Sevigny, C. P. & Guyenet, P. G. (2003) Inspiratory augmenting bulbospinal neurons express both glutamatergic and enkephalinergic phenotypes. J Comp Neurol 455, 113–124.

    PubMed  Google Scholar 

  • Sun, Q.-J., Goodchild, A. K., Chalmers, J. P. & Pilowsky, P. M. (1998) The pre-Bötzinger complex and phase-spanning neurons in the adult rat. Brain Res 809, 204–213.

    PubMed  Google Scholar 

  • Sun, Q.-J., Llewellyn-Smith, I. J., Minson, J. B., Arnolda, L. F., Chalmers, J. P. & Pilowsky, P. M. (1996) Thyrotropin-releasing hormone immunoreactive boutons form close appositions with medullary expiratory neurons in the rat. Brain Res 715, 136–144.

    PubMed  Google Scholar 

  • Sun, Q.-J., Minson, J. B., Llewellyn-Smith, I. J., Arnolda, L. F., Chalmers, J. P. & Pilowsky, P. M. (1997) Bötzinger neurons project towards bulbospinal neurons in the rostral ventrolateral medulla of the rat. J Comp Neurol 388, 23–31.

    PubMed  Google Scholar 

  • Sun, Q.-J., Pilowsky, P. M., Minson, J., Arnolda, L., Chalmers, J. & Llewellyn-Smith, I. J. (1994) Close appositions between tyrosine hydroxylase immunoreactive boutons and respiratory neurons in the rat ventrolateral medulla. J Comp Neurol 340, 1–10.

    PubMed  Google Scholar 

  • Takeda, S., Eriksson, L. I., Yamamoto, Y., Joensen, H., Onimaru, H. & Lindahl, S. G. (2001) Opioid action on respiratory neuron activity of the isolated respiratory network in newborn rats. Anesthesiol 95, 740–749.

    Article  Google Scholar 

  • Wang, H., Stornetta, R. L., Rosin, D. L. & Guyenet, P. G. (2001) Neurokinin-1 receptorimmunoreactive neurons of the ventral respiratory group in the rat. J Comp Neurol 434, 128–146.

    PubMed  Google Scholar 

  • Wang, H., Germanson, T. P. & Guyenet, P. G. (2002) Depressor and tachypneic responses to chemical stimulation of the ventral respiratory group are reduced by ablation of neurokinin-1 receptor-expressing neurons. J Neurosci 22, 3755–3764.

    PubMed  Google Scholar 

  • Watson, R. E. Jr., Wiegand, S. J., Clough, R. W. & Hoffman, G. E. (1986) Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. Peptides 7, 155–159.

    Article  Google Scholar 

  • Young, W. S. 3rd, Alheid, G. F. & Heimer, L. (1984) The ventral pallidal projection to the mediodorsal thalamus: A study with fluorescent retrograde tracers and immunohistofluorescence. J Neurosci 4, 1626–1638.

    PubMed  Google Scholar 

  • Zhan, W. Z., Ellenberger, H. H. & Feldman, J. L. (1989) Monoaminergic and GABAergic terminations in phrenic nucleus of rat identified by immunohistochemical labeling. Neurosci 31, 105–113.

    Article  Google Scholar 

  • Zhang, F. T., Wu, Z. A., Li, Z. H. & Li, Y. R. (1991) Effect of blocking medial area of nucleus retrofacialis on respiratory rhythm. Respir Physiol 85, 73–81.

    PubMed  Google Scholar 

  • Zheng, Y., Barillot, J. C. & Bianchi, A. L. (1991) Patterns of membrane potentials and distributions of the medullary respiratory neurons in the decerebrate rat. Brain Res 546, 261–270.

    PubMed  Google Scholar 

  • Zheng, Y., Barillot, J. C. & Bianchi, A. L. (1992) Medullary expiratory neurons in the decerebrate rat: An intracellular study. Brain Res 576, 245–253.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alheid, G.F., Gray, P.A., Jiang, M.C. et al. Parvalbumin in respiratory neurons of the ventrolateral medulla of the adult rat. J Neurocytol 31, 693–717 (2002). https://doi.org/10.1023/A:1025799830302

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025799830302

Keywords

Navigation