Skip to main content
Log in

Synthesis and Characterization of Mesoporous Alumina as a Catalyst Support for Hydrodechlorination of 1,2-Dichloropropane: Effect of Catalyst Preparation Method

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A mesoporous alumina was synthesized by a posthydrolysis method. The prepared mesoporous alumina was found to have randomly ordered pores, and retained relatively high surface area with narrow pore size distribution centered at ca. 4 nm. Nickel precursors were then supported on the mesoporous alumina by an impregnation (Ni-IMP) and vapor deposition (Ni-VD) method. Several characterizations were carried out in order to investigate physical and chemical properties of mesoporous alumina and supported Ni catalysts. TPR, XPS, and UV-DRS measurements revealed that the Ni-IMP catalyst retained much more amounts of surface nickel aluminate-like species than the Ni-VD sample. TPD experiments also showed that nickel aluminate species affected the adsorption amounts of reactant (1,2-dichloropropane). In the hydrodechlorination of 1,2-dichloropropane (DCPA), DCPA conversion over the Ni-VD catalyst was about two times higher than that over the Ni-IMP catalyst at 300 °C. It is probably due to the fact that the Ni-VD catalyst, which had low contents of nickel aluminate species compared to the Ni-IMP catalyst, exhibited higher degree of reduction than the Ni-IMP catalyst at pretreatment conditions. The difference in DCPA conversion between two catalysts was closely related to the degree of reduction of nickel species and the amounts of adsorption of DCPA onto the catalyst as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature 359 (1992) 710.

    Google Scholar 

  2. Y. S. Cho, J. C. Park, W. Y. Lee and J. Yi, Catal. Lett. 81 (2002) 89.

    Google Scholar 

  3. Y. Park, T. Kang, Y. S. Cho, J. C. Park and J. Yi, Stud. Surf. Sci. Catal. (in press).

  4. Y. Kim, P. Kim, C. Kim, J. W. Choi and J. Yi, Proc. 9th Asia-Pacific Conf. Chem. Eng. (Christchurch, New Zealand, 2002) p. 86.

    Google Scholar 

  5. Y. Liu, W. Zhang and T. J. Pinnavaia, Angew. Chem. Int. Ed. 40 (2001) 1255.

    Google Scholar 

  6. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Qiu, D. Zhao and F. S. Xiao, Angew. Chem. Int. Ed. 40 (2001) 1258.

    Google Scholar 

  7. Y. Kim, B. Lee and J. Yi, Korean J. Chem. Eng. 19 (2002) 908.

    Google Scholar 

  8. F. Vaudry, S. Khodabandeh and M. E. Davis, Chem. Mater. 8 (1996) 1451.

    Google Scholar 

  9. S. B. Pu, J. B. Kim, M. Seno and T. Inui, Micro. Mater. 10 (1997) 25.

    Google Scholar 

  10. S. Cabrera, J. E. Haskouri, J. Alamo, A. Beltran, S. Mendioroz, M. D. Marcos and P. Amoros, Adv. Mater. 11 (1999) 379.

    Google Scholar 

  11. G. Tavoularis, M. A. Keane, J. Mol. Catal. A141 (1999) 187.

    Google Scholar 

  12. E. J. Shin, A. Spiller, G. Tavoularis and M. A. Keane, Phys. Chem. Chem. Phys. 1 (1999) 3174.

    Google Scholar 

  13. Y. H. Choi and W. Y. Lee, Catal. Lett. 67 (2000) 155.

    Google Scholar 

  14. Y. H. Choi and W. Y. Lee, J. Mol. Catal. A174 (2001) 193.

    Google Scholar 

  15. G. Tavoularis, M. A. Keane, Appl. Catal. A182 (1999) 309.

    Google Scholar 

  16. Y. Cesteros, P. Salagre, F. Medina and J. E. Sueiras, Appl. Catal. B22 (1999) 135.

    Google Scholar 

  17. A. Morato, L. Alonso, F. Medina, P. Salagre, J. E. Sueiras, R. Terrado and A. Giralt, Appl. Catal. B23 (1999) 175.

    Google Scholar 

  18. V. I. Parvulescu, H. Bonnemann, V. Parvulescu, U. Endruschat, A. Rufinska, W. Lehmann, B. Tesche and G. Poncelet, Appl. Catal., A214 (2001) 273.

    Google Scholar 

  19. W. Deng, P. Bodart, M. Pruski and B. H. Shanks, Micro. Meso. Mater. 52 (2002) 169.

    Google Scholar 

  20. F. Rouguerol, J. Rouguerol and K. Sing, Adsorption by Powders and Porous Solid; Principles, Methodology and Applications (Academic Press, San Diego, 1999).

    Google Scholar 

  21. S. L. Chen, H. L. Zhang, J. Hu, C. Contescu and J. A. Schwarz, Appl. Catal. 73 (1991) 289.

    Google Scholar 

  22. J. A. Meith and J. A. Schwarz, Appl. Catal. 55 (1989) 137.

    Google Scholar 

  23. P. Salage, J. L. G. Fierro, F. Medina and J. E. Sueiras, J. Mol. Catal., A106 (1996) 125.

    Google Scholar 

  24. M. Wu and D. M. Hercules, J. Phys. Chem. 83 (1979) 2003.

    Google Scholar 

  25. R. Lamber and G. Schulz-Ekloff, J. Catal. 146 (1994) 601.

    Google Scholar 

  26. B. Rebours, J. B. d'Espinose de la Caillerie and O. Clause, J. Am. Chem. Soc. 116 (1994) 1707.

    Google Scholar 

  27. M. L. Jocomo, M. Schiavello and A. Cimino, J. Phys. Chem. 75 (1971) 1034.

    Google Scholar 

  28. B. Vos, E. Poels and A. Bliek, J. Catal. 77 (2001) 198.

    Google Scholar 

  29. E. J. Shin and M. A. Keane, Appl. Catal. B18 (1998) 241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongheop Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, P., Kim, Y., Kim, C. et al. Synthesis and Characterization of Mesoporous Alumina as a Catalyst Support for Hydrodechlorination of 1,2-Dichloropropane: Effect of Catalyst Preparation Method. Catalysis Letters 89, 185–192 (2003). https://doi.org/10.1023/A:1025794127243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025794127243

Navigation