Skip to main content
Log in

Evaluation of an Immortalized Retinal Endothelial Cell Line as an In Vitro Model for Drug Transport Studies Across the Blood-Retinal Barrier

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To evaluate the growth and barrier properties of an immortalized rat retinal endothelial cell line (TR-iBRB) maintained on permeable membrane for drug transport studies.

Methods. TR-iBRB cells were grown on permeable membrane filters. The effect of coating material on cell growth was investigated. Transport of [14C]-3-O-methyl-D-glucose (3-OMG), AGN 194716, AGN 195127, AGN 197075, acebutolol, alprenolol, atenolol, brimonidine, carbamazepine epoxide (CBZ-E), metoprolol, nadolol, rhodamine 123, and sotalol was measured across the cultured cell layer to determine the apparent permeability coefficients (Papp). Rhodamine 123 uptake into these cells in the presence of these test compounds was evaluated. Western blot was performed to detect the efflux transporter P-glycoprotein (P-gp). Bidirectional transport in MDR1-MDCK cell monolayers overexpressing the human P-gp was measured for AGN 197075.

Results. TR-iBRB cells form confluent cell layers when grown on fibronectin-coated membrane and exhibit characteristic spindle-shaped morphology. A good correlation between Papp and cLogD (pH 7.4) of the compounds tested was observed, except for 3-OMG, AGN 197075, and rhodamine 123, which are substrates of carrier-mediated transport systems such as P-gp and a glucose transporter (GLUT1). When grown on permeable membrane, TR-iBRB cells expressed functional P-gp and GLUT1.

Conclusions. TR-iBRB cells, when grown on permeable membrane, provide a useful tool for predicting permeability across the BRB. The usefulness of this model for high-throughput screening and rank ordering of drug candidates intended for the back of the eye in treatment of ocular diseases needs further characterization upon correlation with in vivo data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Infeld and J. G. O'Shea. Diabetic retinopathy. Postgrad. Med. J. 74:129–133 (1998).

    Google Scholar 

  2. E. T. Cunningham Jr., R. D. Levinson, L. M. Jampol, R. E. Engstrom Jr., H. Lewis, and G. N. Holland. Ischemic maculopathy in patients with acquired immunodeficiency syndrome. Am. J. Ophthalmol. 132:727–733 (2001).

    Google Scholar 

  3. S. van Soest, A. Westerveld, P. T. de Jong, E. M. Bleeker–Wagemakers, and A. A. Bergen. Retinitis pigmentosa: defined from a molecular point of view. Surv. Ophthalmol. 43:321–334 (1999).

    Google Scholar 

  4. J. Cunha–Vaz. The blood–ocular barriers. Surv. Ophthalmol. 23:279–296 (1979).

    Google Scholar 

  5. M. Shakib and J. G. Cunha–Vaz. Studies on the permeability of the blood–retinal barrier. IV. Junctional complexes of the retinal vessels and their role in the permeability of the blood–retinal barrier. Exp. Eye Res. 5:229–234 (1966).

    Google Scholar 

  6. J. Greenwood. Characterization of a rat retinal endothelial cell culture and the expression of P–glycoprotein in brain retinal endothelium in vitro. J. Neuroimmunol. 39:123–132 (1992).

    Google Scholar 

  7. Y. S. Chang, L. L. Munn, M. V. Hillsley, R. O. Dull, J. Yuan, S. Lakshminarayanan, T. W. Gardner, R. K. Jain, and J. M. Tarbell. Effect of vascular endothelial growth factor on cultured endothelial cell monolayer transport properties. Microvasc. Res. 59:265–277 (2000).

    Google Scholar 

  8. G. L. King, A. B. Berman, S. Bonner–Weir, and M. P. Carson. Regulation of vascular permeability in cell culture. Diabetes 36:1460–1467 (1987).

    Google Scholar 

  9. K. Hosoya, M. Tomi, S. Ohtsuki, H. Takanaga, M. Ueda, N. Yanai, M. Obinata, and T. Terasaki. Conditionally immortalized retinal capillary endothelial cell lines (TR–iBRB) expressing differentiated endothelial cell functions derived from a transgenic rat. Exp. Eye Res. 72:163–172 (2001).

    Google Scholar 

  10. N. J. Abbott, C. C. Hughes, P. A. Revest, and J. Greenwood. Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood–brain barrier. J. Cell Sci. 103(Pt 1):23–37 (1992).

    Google Scholar 

  11. K. Takata, T. Kasahara, M. Kasahara, O. Ezaki, and H. Hirano. Ultracytochemical localization of the erythrocyte/HepG2–type glucose transporter (GLUT1) in cells of the blood–retinal barrier in the rat. Invest. Ophthalmol. Vis. Sci. 33:377–383 (1992).

    Google Scholar 

  12. K. Hosoya, T. Kondo, M. Tomi, H. Takanaga, S. Ohtsuki, and T. Terasaki. MCT1–mediated transport of L–lactic acid at the inner blood–retinal barrier: a possible route for delivery of monocarboxylic acid drugs to the retina. Pharm. Res. 18:1669–1676 (2001).

    Google Scholar 

  13. D. Z. Gerhart, R. L. Leino, and L. R. Drewes. Distribution of monocarboxylate transporters MCT1 and MCT2 in rat retina. Neuroscience 92:367–375 (1999).

    Google Scholar 

  14. M. P. Dehouck, P. Jolliet–Riant, F. Bree, J. C. Fruchart, R. Cecchelli, and J. P. Tillement. Drug transfer across the blood–brain barrier: correlation between in vitro and in vivo models. J. Neurochem. 58:1790–1797 (1992).

    Google Scholar 

  15. H. Franke, H. J. Galla, and C. T. Beuckmann. An improved low–permeability in vitro–model of the blood–brain barrier: transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res. 818:65–71 (1999).

    Google Scholar 

  16. H. E. de Vries, M. C. Blom–Roosemalen, A. G. de Boer, T. J. van Berkel, and D. D. Breimer. and J. Kuiper. Effect of endotoxin on permeability of bovine cerebral endothelial cell layers in vitro. J. Pharmacol. Exp. Ther. 277:1418–1423 (1996).

    Google Scholar 

  17. P. J. Gaillard and A. G. de Boer. Relationship between permeability status of the blood–brain barrier and in vitro permeability coefficient of a drug. Eur. J. Pharm. Sci. 12:95–102 (2000).

    Google Scholar 

  18. S. I. Rapoport, K. Ohno, and K. D. Pettigrew. Drug entry into the brain. Brain Res. 172:354–359 (1979).

    Google Scholar 

  19. V. A. Levin. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J. Med. Chem. 23:682–684 (1980).

    Google Scholar 

  20. H. Murakami, H. Takanaga, H. Matsuo, H. Ohtani, and Y. Sawada. Comparison of blood–brain barrier permeability in mice and rats using in situ brain perfusion technique. Am. J. Physiol. Heart Circ. Physiol. 279:H1022–H1028 (2000).

    Google Scholar 

  21. A. Adson, T. J. Raub, P. S. Burton, C. L. Barsuhn, A. R. Hilgers, K. L. Audus, and N. F. Ho. Quantitative approaches to delineate paracellular diffusion in cultured epithelial cell monolayers. J. Pharm. Sci. 83:1529–1536 (1994).

    Google Scholar 

  22. C. Hilgendorf, H. Spahn–Langguth, C. G. Regardh, E. Lipka, G. L. Amidon, and P. Langguth. Caco–2 versus Caco–2/HT29–MTX co–cultured cell lines: Permeabilities via diffusion, inside–outside–directed carrier–mediated transport. J. Pharm. Sci. 89:63–75 (2000).

    Google Scholar 

  23. P. Agon, P. Goethals, D. Van Haver, and J. M. Kaufman. Permeability of the blood–brain barrier for atenolol studied by positron emission tomography. J. Pharm. Pharmacol. 43:597–600 (1991).

    Google Scholar 

  24. A. K. Kumagai. Glucose transport in brain and retina: implications in the management and complications of diabetes. Diabetes Metab. Res. Rev. 15:261–273 (1999).

    Google Scholar 

  25. J. W. Polli, J. E. Humphreys, S. A. Wring, T. C. Burnette, K. D. Read, A. Hersey, D. Butina, L. Bertolotti, F. Pugnaghi, and C. J. Serabjit–Singh. A comparison of Madin–Darby canine kidney cells bovine brain endothelial cells as a blood–brain barrier screen in early drug discovery. In M. Balls, A.–M. van Zeller, M. E. Halder (eds)., Progress in the Reduction, Refinement and Replacement of Animal Experimentation, Elsevier, Amsterdam, 2000, pp. 271–289.

    Google Scholar 

  26. C. Lohmann, S. Huwel, and H. J. Galla. Predicting blood–brain barrier permeability of drugs: Evaluation of different in vitro assays. J. Drug Target. 10:263–276 (2002).

    Google Scholar 

  27. S. Lundquist, M. Renftel, J. Brillault, L. Fenart, R. Cecchelli, and M. P. Dehouck. Prediction of drug transport through the blood–brain barrier in vivo: A comparison between two in vitro cell models. Pharm. Res. 19:976–981 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, J., Cross, S.T., Tang-Liu, D.D.S. et al. Evaluation of an Immortalized Retinal Endothelial Cell Line as an In Vitro Model for Drug Transport Studies Across the Blood-Retinal Barrier. Pharm Res 20, 1357–1363 (2003). https://doi.org/10.1023/A:1025789606885

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025789606885

Navigation