Skip to main content
Log in

An Improved Method for Ray Tracing Through Curved Inhomogeneities in Composite Materials

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Ultrasonic NDE of anisotropic materials, due to its inherent complexity, demands a stringent approach to determine wave propagation path in presence of inhomogeneities. In addition to developing inspection procedures, the ray path information needs to be integrated with the tomographic reconstruction algorithm of composite materials. The present study proposes a method to identify inhomogeneity boundaries using edge detection approach and to implement the same in two-dimensional ray tracing model. In general, inhomogeneity boundaries can be detected on the basis of first-order gradient of a field value (such as Young's modulus). The boundaries can be represented in terms of location and orientation. This information is included in the algorithm for more accurate ray tracing. Examples show the usefulness of the method to take into effect poor penetration of ultrasound energy in certain regions of inhomogeneous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. J. D. Achenbach, Wave Propagation in Elastic Solids, (North Holland, 1973).

  2. E. G. Henneke, Reflection-refraction of a stress wave at a plane boundary between anisotropic media. J. Acoust. Soc. Am. 51(1), 210-217 (1972).

    Google Scholar 

  3. S. I. Rokhlin, T. K. Bolland, and L. Adler, Reflection and refraction of elastic waves on a plane interface between two generally anisotropic media. J. Acoust. Soc. Am. 79(4), 906-918, (1986).

    Google Scholar 

  4. B. Mandal, Reflection and transmission properties of elastic waves on a plane interface for general anisotropic media. J. Acoust. Soc. Am. 90(2), 1106-1118 (1991).

    Google Scholar 

  5. F. A. Chedid-Helou, and J. H. Hemann, Mathematical modeling of wave propagation in anisotropic media. Mater. Eval. June, 708-715 (1991).

    Google Scholar 

  6. J. A. Ogilvy, Computerized ultrasonic ray tracing in austenitic steel. NDT International, 18(2), 67-77 (1985).

    Google Scholar 

  7. J. A. Ogilvy, Ultrasonic beam profiles and beam propagation in an austenitic weld using a theoretical ray tracing model. Ultrasonics 24, 337-347 (1986).

    Google Scholar 

  8. A. H. Harker, J. A. Ogilvy, and J. A. G. Temple, Modelling ultrasonic inspection of austenitic welds. J. Nondestr. Eval. 9, 155-165 (1990).

    Google Scholar 

  9. A. H. Harker, and J. A. Ogilvy, Coherent wave propagation in inhomogeneous materials: a comparison of theoretical models. Ultrasonics 29, 235-244 (1991).

    Google Scholar 

  10. J. A. Ogilvy, An iterative ray tracing model for ultrasonic nondestructive testing. NDT & E International 25(1), 3-10 (1992).

    Google Scholar 

  11. V. Schmitz, F. Walte, and S. V. Chakhlov, 3-D ray tracing in austenite materials. NDT & E International 32(2/3), 201-213 (1999).

    Google Scholar 

  12. M. Spies, Elastic waves in homogeneous and layered transversely isotropic media: plane waves and gaussian wave packets: a general approach. J. Acoust. Soc. Am. 95(4), 1748-1760 (1994).

    Google Scholar 

  13. M. Spies, Transducer-modeling in general transversely isotropic media via point-source-synthesis: theory. J. Nondestr. Eval. 13(2), 85-99 (1994).

    Google Scholar 

  14. M. Spies, Modeling of transducer fields in inhomogeneous anisotropic materials using gaussian beam superposition. NDT & E International 33, 155-162 (2000).

    Google Scholar 

  15. H. Yim, and Y. Choi, Simulation of ultrasonic waves in various types of elastic media using the mass spring lattice model. Mater. Eval. pp. 889-896 (2000). Au: please supply missing information.

  16. R. A. Kline, Y. Q. Wang, R. B. Mignogna, and P. O. Delsanto, A finite difference approach to accoustic tomography in anisotropic media. J. Nondestr. Eval. 13(2), 75-83 (1994).

    Google Scholar 

  17. Y. Q. Wang, and R. A. Kline, Ray tracing in isotropic and anisotropic materials: application to tomographic image reconstruction. J. Acoust. Soc. Am. 95(5), 2525-2532 (1994).

    Google Scholar 

  18. W. H. Press W. T. Vellerling, and P. B. Flannery, Numerical Recipe in C. (Cambridge University Press, 1992).

  19. A. K. Jain, Fundamentals of Digital Image Processing, (Prentice Hall, 1989).

  20. R. C. Gonzalez, and R. E. Woods, Digital Image Processing, (Addison-Wesley, 1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Rathore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathore, S.K., Kishore, N.N. & Munshi, P. An Improved Method for Ray Tracing Through Curved Inhomogeneities in Composite Materials. Journal of Nondestructive Evaluation 22, 1–9 (2003). https://doi.org/10.1023/A:1025785713768

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025785713768

Navigation