Skip to main content
Log in

Novel Agents for the Prevention of Breast Cancer: Targeting Transcription Factors and Signal Transduction Pathways

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Transformation of breast cells occurs through loss or mutation of tumor suppressor genes, or activation or amplification of oncogenes, leading to deregulation of signal transduction pathways, abnormal amplification of growth signals, and aberrant expression of genes that ultimately transform the cells into invasive cancer. The goal of cancer preventive therapy, or “chemoprevention,” is to eliminate premalignant cells or to block the progression of normal cells into cancer. Multiple alterations in signal pathways and transcription factors are observed in mammary gland tumorigenesis. In particular, estrogen receptor (ER) deregulation plays a critical role in breast cancer development and progress, and targeting ER with selective ER modulators (SERMs) has achieved significant reduction of breast cancer incidence in women at high risk for breast cancer. However, not all breast cancer is prevented by SERMs, because 30–40% of the tumors are ER-negative. Other receptors for retinoids, vitamin D analogs and peroxisome proliferator–activiator, along with transcription factors such as AP-1, NF-κB, and STATs (signal transducers and activators of transcription) affect breast tumorigenesis. This is also true for the signal transduction pathways, for example cyclooxygenase 2 (Cox-2), HER2/neu, mitogen-activated protein kinase (MAPK), and PI3K/Akt. Therefore, proteins in pathways that are altered during the process of mammary tumorigenesis may be promising targets of future chemopreventive drugs. Many newly-developed synthetic or natural compounds/agents are now under testing in preclinical studies and clinical trials. Receptor selective retinoids, receptor tyrosine kinase inhibitors (TKIs), SERMs, Cox-2 inhibitors, and others are some of the promising novel agents for the prevention of breast cancer. The chemopreventive activity of these agents and other novel signal transduction inhibitors are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. B. Sporn and N. Suh (2000). Chemoprevention of cancer. Carcinogenesis 21:525-530.

    PubMed  Google Scholar 

  2. J. A. O'Shaughnessy, G. J. Kelloff, G. B. Gordon, A. J. Dannenberg, W. K. Hong, C. J. Fabian, C. C. Sigman, M. M. Bertagnolli, S. P. Stratton, S. Lam, W. G. Nelson, F. L. Meyskens, D. S. Alberts, M. Follen, A. K. Rustgi, V. Papadimitrakopoulou, P. T. Scardino, A. F. Gazdar, L. W. Wattenberg, M. B. Sporn, W. A. Sakr, S. M. Lippman, and D. D. Von Hoff (2002). Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development. Clin. Cancer Res. 8:314-346.

    PubMed  Google Scholar 

  3. (1999). Prevention of cancer in the next millennium: Report of the Chemoprevention Working Group to the American Association for Cancer Research. Cancer Res. 59:4743-4758.

  4. S. M. Lippman and W. K. Hong (2002). Cancer prevention science and practice. Cancer Res. 62:5119-5125.

    PubMed  Google Scholar 

  5. P. Greenwald (2002). Cancer chemoprevention. BMJ 324:714-718.

    PubMed  Google Scholar 

  6. A. C. Society (2002). Estimated New Cancer Cases and Deaths by Gender, US, 2002.

  7. S. M. Townson, M. Ivanova, A. V. Lee and S. Oesterreich (2002). The role of estrogen in normal breast development and breast cancer. In E. Dopp, H. Stopper and G. M. Alink (Ed). Natural and Synthetic Estrogens: Aspects of the Cellular and Molecular Activity. Research Signpost, Kerala, India.

    Google Scholar 

  8. S. Nilsson, S. Makela, E. Treuter, M. Tujague, J. Thomsen, G. Andersson, E. Enmark, K. Pettersson, M. Warner, and J. A. Gustafsson (2001). Mechanisms of estrogen action. Physiol Rev. 81:1535-1565.

    PubMed  Google Scholar 

  9. C. K. Osborne (1998). Tamoxifen in the treatment of breast cancer. N. Engl. J. Med. 339:1609-1618.

    PubMed  Google Scholar 

  10. T. A. Grese, J. P. Sluka, H. U. Bryant, G. J. Cullinan, A. L. Glasebrook, C. D. Jones, K. Matsumoto, A. D. Palkowitz, M. Sato, J. D. Termine, M. A. Winter, N. N. Yang, and J. A. Dodge (1997). Molecular determinants of tissue selectivity in estrogen receptor modulators. Proc. Natl. Acad. Sci. U. S. A. 94:14105-14110.

    PubMed  Google Scholar 

  11. J. I. Schafer, H. Liu, D. A. Tonetti, and V. C. Jordan (1999). The interaction of raloxifene and the active metabolite of the antiestrogen EM-800 (SC 5705) with the human estrogen receptor. Cancer Res. 59:4308-4313.

    PubMed  Google Scholar 

  12. R. M. O'Regan, A. Cisneros, G. M. England, J. I. MacGregor, H. D. Muenzner, V. J. Assikis, M. M. Bilimoria, M. Piette, Y. P. Dragan, H. C. Pitot, R. Chatterton, and V. C. Jordan (1998). Effects of the antiestrogens tamoxifen, toremifene, and ICI 182,780 on endometrial cancer growth. J. Natl. Cancer Inst. 90:1552-1558.

    PubMed  Google Scholar 

  13. B. Fisher, J. P. Costantino, D. L. Wickerham, C. K. Redmond, M. Kavanah, W. M. Cronin, V. Vogel, A. Robidoux, N. Dimitrov, J. Atkins, M. Daly, S. Wieand, E. Tan-Chiu, L. Ford, and N. Wolmark (1998). Tamoxifen for prevention of breast cancer: Report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl. Cancer Inst. 90:1371-1388.

    PubMed  Google Scholar 

  14. S. R. Cummings, S. Eckert, K. A. Krueger, D. Grady, T. J. Powles, J. A. Cauley, L. Norton, T. Nickelsen, N. H. Bjarnason, M. Morrow, M. E. Lippman, D. Black, J. E. Glusman, A. Costa, and V. C. Jordan (1999). The effect of raloxifene on risk of breast cancer in postmenopausal women: Results from the MORE randomized trial. Multiple Outcomes of Raloxifene Evaluation. JAMA 281:2189-2197.

    PubMed  Google Scholar 

  15. T. J. Powles (2001). The Royal Marsden Hospital (RMH) trial: Key points and remaining questions. Ann. N. Y. Acad. Sci. 949:109-112.

    PubMed  Google Scholar 

  16. U. Veronesi, P. Maisonneuve, A. Costa, V. Sacchini, C. Maltoni, C. Robertson, N. Rotmensz, and P. Boyle (1998). Prevention of breast cancer with tamoxifen: Preliminary findings from the Italian randomised trial among hysterectomised women. Italian Tamoxifen Prevention Study. Lancet 352:93-97.

    PubMed  Google Scholar 

  17. IBIS Investigators (2002). First results from the International Breast Cancer Intervention Study (IBIS-I): A randomised prevention trial. Lancet 360:817-824.

    Google Scholar 

  18. K. Wu, H. T. Kim, J. L. Rodriquez, D. Munoz-Medellin, S. K. Mohsin, S. G. Hilsenbeck, W. W. Lamph, M. M. Gottardis, M. A. Shirley, J. G. Kuhn, J. E. Green, and P. H. Brown (2000). 9-cis-Retinoic acid suppresses mammary tumorigenesis in C3(1)-simian virus 40 T antigen-transgenic mice. Clin. Cancer Res. 6:3696-3704.

    PubMed  Google Scholar 

  19. J. E. Green, M. A. Shibata, K. Yoshidome, M. L. Liu, C. Jorcyk, M. R. Anver, J. Wigginton, R. Wiltrout, E. Shibata, S. Kaczmarczyk, W. Wang, Z. Y. Liu, A. Calvo, and C. Couldrey (2000). The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: Dsssuctal epithelial cell targeting with multistage progression to carcinoma. Oncogene 19:1020-1027.

    PubMed  Google Scholar 

  20. V. A. Miller, F. M. Benedetti, J. R. Rigas, A. L. Verret, D. G. Pfister, D. Straus, M. G. Kris, M. Crisp, R. Heyman, G. R. Loewen, J. A. Truglia, and R. P. Warrell Jr. (1997). Initial clinical trial of a selective retinoid X receptor ligand, LGD1069. J. Clin. Oncol. 15:790-795.

    PubMed  Google Scholar 

  21. N. A. Rizvi, J. L. Marshall, W. Dahut, E. Ness, J. A. Truglia, G. Loewen, G. M. Gill, E. H. Ulm, R. Geiser, D. Jaunakais, and M. J. Hawkins (1999). A Phase I study of LGD1069 in adults with advanced cancer. Clin. Cancer Res. 5:1658-1664.

    PubMed  Google Scholar 

  22. M. Duvic, K. Hymes, P. Heald, D. Breneman, A. G. Martin, P. Myskowski, C. Crowley, and R. C. Yocum (2001). Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: Multinational phase II–III trial results. J. Clin. Oncol. 19:2456-2471.

    PubMed  Google Scholar 

  23. K. J. Pienta, P. S. Esper, F. Zwas, R. Krzeminski, and L. E. Flaherty (1997). Phase II chemoprevention trial of oral fenretinide in patients at risk for adenocarcinoma of the prostate. Am. J. Clin. Oncol. 20:36-39.

    PubMed  Google Scholar 

  24. T. Gulliford, J. English, K. W. Colston, P. Menday, S. Moller, and R. C. Coombes (1998). A phase I study of the vitamin D analogue EB 1089 in patients with advanced breast and colorectal cancer. Br. J. Cancer 78:6-13.

    PubMed  Google Scholar 

  25. G. Liu, K. Oettel, G. Ripple, M. J. Staab, D. Horvath, D. Alberti, R. Arzoomanian, R. Marnocha, R. Bruskewitz, R. Mazess, C. Bishop, A. Bhattacharya, H. Bailey, and G. Wilding (2002). Phase I trial of 1alpha-hydroxyvitamin d(2) in patients with hormone refractory prostate cancer. Clin. Cancer Res. 8:2820-2827.

    PubMed  Google Scholar 

  26. T. R. Evans, K. W. Colston, F. J. Lofts, D. Cunningham, D. A. Anthoney, H. Gogas, J. S. de Bono, K. J. Hamberg, T. Skov, and J. L. Mansi (2002). A phase II trial of the vitamin D analogue Seocalcitol (EB1089) in patients with inoperable pancreatic cancer. Br. J. Cancer 86:680-685.

    PubMed  Google Scholar 

  27. L. Verlinden, A. Verstuyf, M. Quack, M. Van Camp, E. Van Etten, P. De Clercq, M. Vandewalle, C. Carlberg, and R. Bouillon (2001). Interaction of two novel 14-epivitamin D3 analogs with vitamin D3 receptor-retinoid X receptor heterodimers on vitamin D3 responsive elements. J. Bone Miner. Res. 16:625-638.

    PubMed  Google Scholar 

  28. P. Bortman, M. A. Folgueira, M. L. Katayama, I. M. Snitcovsky, and M. M. Brentani (2002). Antiproliferative effects of 1,25-dihydroxyvitamin D3 on breast cells: A mini review. Braz. J. Med. Biol. Res. 35:1-9.

    PubMed  Google Scholar 

  29. J. Hisatake, J. O'Kelly, M. R. Uskokovic, S. Tomoyasu, and H. P. Koeffler (2001). Novel vitamin D(3) analog, 21-(3-methyl-3-hydroxy-butyl)-19-nor D(3), that modulates cell growth, differentiation, apoptosis, cell cycle, and induction of PTEN in leukemic cells. Blood 97:2427-2433.

    PubMed  Google Scholar 

  30. M. Chaudhry, S. Sundaram, C. Gennings, H. Carter, and D. A. Gewirtz (2001). The vitamin D3 analog, ILX-23-7553, enhances the response to adriamycin and irradiation in MCF-7 breast tumor cells. Cancer Chemother. Pharmacol. 47:429-436.

    PubMed  Google Scholar 

  31. M. Chodynski, J. Wietrzyk, E. Marcinkowska, A. Opolski, W. Szelejewski, and A. Kutner (2002). Synthesis and antiproliferative activity of side-chain unsaturated and homologated analogs of 1,25-dihydroxyvitamin D(2). (24E)-(1S)-24-Dehydro-24a-homo-1,25-dihydroxyergocalciferol and congeners. Steroids 67:789-798.

    PubMed  Google Scholar 

  32. A. B. Jones (2001). Peroxisome proliferator-activated receptor (PPAR) modulators: Diabetes and beyond. Med. Res. Rev. 21:540-552.

    PubMed  Google Scholar 

  33. B. A. Stoll (2002). Linkage between retinoid and fatty acid receptors: Implications for breast cancer prevention. Eur. J. Cancer Prev. 11:319-325.

    PubMed  Google Scholar 

  34. E. Elstner, E. A. Williamson, C. Zang, J. Fritz, D. Heber, M. Fenner, K. Possinger, and H. P. Koeffler (2002). Novel therapeutic approach: Ligands for PPARgamma and retinoid receptors induce apoptosis in bcl-2-positive human breast cancer cells. Breast Cancer Res. Treat. 74:155-165.

    PubMed  Google Scholar 

  35. G. M. Pighetti, W. Novosad, C. Nicholson, D. C. Hitt, C. Hansens, A. B. Hollingsworth, M. L. Lerner, D. Brackett, S. A. Lightfoot, and J. M. Gimble (2001). Therapeutic treatment of DMBA-induced mammary tumors with PPAR ligands. Anticancer Res. 21:825-829.

    PubMed  Google Scholar 

  36. M. R. Young, L. Farrell, P. Lambert, P. Awasthi, and N. H. Colburn (2002). Protection against human papillomavirus type 16-E7 oncogene-induced tumorigenesis by in vivo expression of dominant-negative c-jun. Mol. Carcinog. 34:72-77.

    PubMed  Google Scholar 

  37. E. J. Thompson, J. MacGowan, M. R. Young, N. Colburn, and G. T. Bowden (2002). A dominant negative c-jun specifically blocks okadaic acid-induced skin tumor promotion. Cancer Res. 62:3044-3047.

    PubMed  Google Scholar 

  38. A. L. Cheng, C. H. Hsu, J. K. Lin, M. M. Hsu, Y. F. Ho, T. S. Shen, J. Y. Ko, J. T. Lin, B. R. Lin, W. Ming-Shiang, H. S. Yu, S. H. Jee, G. S. Chen, T. M. Chen, C. A. Chen, M. K. Lai, Y. S. Pu, M. H. Pan, Y. J. Wang, C. C. Tsai, and C. Y. Hsieh (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 21:2895-2900.

    PubMed  Google Scholar 

  39. Z. M. Shao, Z. Z. Shen, C. H. Liu, M. R. Sartippour, V. L. Go, D. Heber, and M. Nguyen (2002). Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int. J. Cancer 98:234-240.

    PubMed  Google Scholar 

  40. T. Choudhuri, S. Pal, M. L. Agwarwal, T. Das, and G. Sa (2002). Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett. 512:334-340.

    PubMed  Google Scholar 

  41. H. Inano, M. Onoda, N. Inafuku, M. Kubota, Y. Kamada, T. Osawa, H. Kobayashi, and K. Wakabayashi (2000). Potent preventive action of curcumin on radiation-induced initiation of mammary tumorigenesis in rats. Carcinogenesis 21:1835-1841.

    PubMed  Google Scholar 

  42. C. C. Lin, Y. P. Lu, Y. R. Lou, C. T. Ho, H. H. Newmark, C. MacDonald, K. W. Singletary, and M. T. Huang (2001). Inhibition by dietary dibenzoylmethane of mammary gland proliferation, formation of DMBA-DNA adducts in mammary glands, and mammary tumorigenesis in Sencar mice. Cancer Lett. 168:125-132.

    PubMed  Google Scholar 

  43. T. J. Huang, I. M. Adcock, and K. F. Chung (2001). A novel transcription factor inhibitor, SP100030, inhibits cytokine gene expression, but not airway eosinophilia or hyperresponsiveness in sensitized and allergen-exposed rat. Br. J. Pharmacol. 134:1029-1036.

    PubMed  Google Scholar 

  44. K. Gunawardena, D. K. Murray, R. E. Swope, and A. W. Meikle (2002). Inhibition of nuclear factor kappaB induces apoptosis following treatment with tumor necrosis factor alpha and an antioxidant in human prostate cancer cells. Cancer Detect. Prev. 26:229-237.

    PubMed  Google Scholar 

  45. Q. G. Dong, G. M. Sclabas, S. Fujioka, C. Schmidt, B. Peng, T. Wu, M. S. Tsao, D. B. Evans, J. L. Abbruzzese, T. J. McDonnell, and P. J. Chiao (2002). The function of multiple IkappaB: NF-kappaB complexes in the resistance of cancer cells to Taxol-induced apoptosis. Oncogene 21:6510-6519.

    PubMed  Google Scholar 

  46. B. D. Cheson (2002). Hematologic malignancies: New developments and future treatments. Semin. Oncol. 29:33-45.

    Google Scholar 

  47. J. A. Bonner, K. P. Raisch, H. Q. Trummell, F. Robert, R. F. Meredith, S. A. Spencer, D. J. Buchsbaum, M. N. Saleh, M. A. Stackhouse, A. F. LoBuglio, G. E. Peters, W. R. Carroll, and H. W. Waksal (2000). Enhanced apoptosis with combination C225/radiation treatment serves as the impetus for clinical investigation in head and neck cancers. J. Clin. Oncol. 18:47S-53S.

    PubMed  Google Scholar 

  48. W. M. Burke, X. Jin, H. J. Lin, M. Huang, R. Liu, R. K. Reynolds, and J. Lin (2001). Inhibition of constitutively active Stat3 suppresses growth of human ovarian and breast cancer cells. Oncogene 20:7925-7934.

    PubMed  Google Scholar 

  49. L. Li and P. E. Shaw (2002). Autocrine-mediated activation of STAT3 correlates with cell proliferation in breast carcinoma lines. J. Biol. Chem. 277:17397-17405.

    PubMed  Google Scholar 

  50. S. Alas and B. Bonavida (2003). Inhibition of constitutive STAT3 activity sensitizes resistant non-Hodgkin's lymphoma and multiple myeloma to chemotherapeutic drug-mediated apoptosis. Clin. Cancer Res. 9:316-326.

    PubMed  Google Scholar 

  51. L. Burdelya, R. Catlett-Falcone, A. Levitzki, F. Cheng, L. B. Mora, E. Sotomayor, D. Coppola, J. Sun, S. Sebti, W. S. Dalton, R. Jove, and H. Yu (2002). Combination therapy with AG-490 and interleukin 12 achieves greater antitumor effects than either agent alone. Mol. Cancer Ther. 1:893-899.

    PubMed  Google Scholar 

  52. A. Aranda and A. Pascual (2001). Nuclear hormone receptors and gene expression. Physiol. Rev. 81:1269-1304.

    Google Scholar 

  53. L. Yang, H. T. Kim, D. Munoz-Medellin, P. Reddy, and P. H. Brown (1997). Induction of retinoid resistance in breast cancer cells by overexpression of cJun. Cancer Res. 57:4652-4661.

    PubMed  Google Scholar 

  54. M. Rubin, E. Fenig, A. Rosenauer, C. Menendez-Botet, C. Achkar, J. M. Bentel, J. Yahalom, J. Mendelsohn, and W. H. Miller Jr. (1994). 9-Cis retinoic acid inhibits growth of breast cancer cells and down-regulates estrogen receptor RNA and protein. Cancer Res. 54:6549-6556.

    PubMed  Google Scholar 

  55. M. A. Anzano, S. W. Byers, J. M. Smith, C. W. Peer, L. T. Mullen, C. C. Brown, A. B. Roberts, and M. B. Sporn (1994). Prevention of breast cancer in the rat with 9-cis-retinoic acid as a single agent and in combination with tamoxifen. Cancer Res. 54:4614-4617.

    PubMed  Google Scholar 

  56. V. A. Miller, J. R. Rigas, F. M. Benedetti, A. L. Verret, W. P. Tong, M. G. Kris, G. M. Gill, G. R. Loewen, J. A. Truglia, E. H. Ulm, and R. P. Warrell Jr. (1996). Initial clinical trial of the retinoid receptor pan agonist 9-cis retinoic acid. Clin. Cancer Res. 2:471-475.

    PubMed  Google Scholar 

  57. J. A. Fontana (1987). Interaction of retinoids and tamoxifen on the inhibition of human mammary carcinoma cell proliferation. Exp. Cell Biol. 55:136-144.

    PubMed  Google Scholar 

  58. E. Ulukaya and E. J. Wood (1999). Fenretinide and its relation to cancer. Cancer Treat. Rev. 25:229-235.

    PubMed  Google Scholar 

  59. R. C. Moon, H. J. Thompson, P. J. Becci, C. J. Grubbs, R. J. Gander, D. L. Newton, J. M. Smith, S. L. Phillips, W. R. Henderson, L. T. Mullen, C. C. Brown, and M. B. Sporn (1979). N-(4-Hydroxyphenyl)retinamide, a new retinoid for prevention of breast cancer in the rat. Cancer Res. 39:1339-1346.

    PubMed  Google Scholar 

  60. T. A. Ratko, C. J. Detrisac, N. M. Dinger, C. F. Thomas, G. J. Kelloff, and R. C. Moon (1989). Chemopreventive efficacy of combined retinoid and tamoxifen treatment following surgical excision of a primary mammary cancer in female rats. Cancer Res. 49:4472-4476.

    PubMed  Google Scholar 

  61. R. C. Moon, G. J. Kelloff, C. J. Detrisac, V. E. Steele, C. F. Thomas, and C. C. Sigman (1992). Chemoprevention of MNU-induced mammary tumors in the mature rat by 4-HPR and tamoxifen. Anticancer Res. 12:1147-1153.

    PubMed  Google Scholar 

  62. U. Veronesi, G. De Palo, E. Marubini, A. Costa, F. Formelli, L. Mariani, A. Decensi, T. Camerini, M. R. Del Turco, M. G. Di Mauro, M. G. Muraca, M. Del Vecchio, C. Pinto, G. D'Aiuto, C. Boni, T. Campa, A. Magni, R. Miceli, M. Perloff, W. F. Malone, and M. B. Sporn (1999). Randomized trial of fenretinide to prevent second breast malignancy in women with early breast cancer. J. Natl. Cancer Inst. 91:1847-1856.

    PubMed  Google Scholar 

  63. Y. Aoyama (2002). Experimental studies on the effects of the combined use of N-(4-hydroxyphenyl)retinamide (4-HPR) and tamoxifen (TAM) for estrogen receptor (ER)-negative breast cancer. Kurume Med. J. 49:27-33.

    PubMed  Google Scholar 

  64. S. E. Singletary, E. N. Atkinson, A. Hoque, N. Sneige, A. A. Sahin, H. A. Fritsche Jr., R. Lotan, T. Lu, W. N. Hittelman, T. B. Bevers, C. B. Stelling, and S. M. Lippman (2002). Phase II clinical trial of N-(4-Hydroxyphenyl)retinamide and tamoxifen administration before definitive surgery for breast neoplasia. Clin. Cancer Res. 8:2835-2842.

    PubMed  Google Scholar 

  65. M. M. Gottardis, E. D. Bischoff, M. A. Shirley, M. A. Wagoner, W. W. Lamph, and R. A. Heyman (1996). Chemoprevention of mammary carcinoma by LGD1069 (Targretin): An RXR-selective ligand. Cancer Res. 56:5566-5570.

    PubMed  Google Scholar 

  66. K. Wu, H. T. Kim, J. L. Rodriquez, S. G. Hilsenbeck, S. K. Mohsin, X. C. Xu, W. W. Lamph, J. G. Kuhn, J. E. Green, and P. H. Brown (2002). Suppression of mammary tumorigenesis in transgenic mice by the RXR-selective retinoid, LGD1069. Cancer Epidemiol. Biomarkers Prev. 11:467-474.

    PubMed  Google Scholar 

  67. K. Wu, Y. Zhang, X. C. Xu, J. Hill, J. Celestino, H. T. Kim, S. K. Mohsin, S. G. Hilsenbeck, W. W. Lamph, R. Bissonette, and P. H. Brown (2002). The retinoid X receptor-selective retinoid, LGD1069, prevents the development of estrogen receptor-negative mammary tumors in transgenic mice. Cancer Res. 62:6376-6380.

    PubMed  Google Scholar 

  68. E. D. Bischoff, M. M. Gottardis, T. E. Moon, R. A. Heyman, and W. W. Lamph (1998). Beyond tamoxifen: The retinoid X receptor-selective ligand LGD1069 (TARGRETIN) causes complete regression of mammary carcinoma. Cancer Res. 58:479-484.

    PubMed  Google Scholar 

  69. N. Suh, W. W. Lamph, A. L. Glasebrook, T. A. Grese, A. D. Palkowitz, C. R. Williams, R. Risingsong, M. R. Farris, R. A. Heyman, and M. B. Sporn (2002). Prevention and treatment of experimental breast cancer with the combination of a new selective estrogen receptor modulator, arzoxifene, and a new rexinoid, LG 100268. Clin. Cancer Res. 8:3270-3275.

    PubMed  Google Scholar 

  70. R. J. Frampton, L. J. Suva, J. A. Eisman, D. M. Findlay, G. E. Moore, J. M. Moseley, and T. J. Martin (1982). Presence of 1,25-dihydroxyvitamin D3 receptors in established human cancer cell lines in culture. Cancer Res. 42:1116-1119.

    PubMed  Google Scholar 

  71. J. A. Eisman, L. J. Suva, E. Sher, P. J. Pearce, J. W. Funder, and T. J. Martin (1981). Frequency of 1,25-dihydroxyvitamin D3 receptor in human breast cancer. Cancer Res. 41:5121-5124.

    PubMed  Google Scholar 

  72. M. Friedrich, R. Axt-Fliedner, C. Villena-Heinsen, W. Tilgen, W. Schmidt, and J. Reichrath (2002). Analysis of vitamin D-receptor (VDR) and retinoid X-receptor alpha in breast cancer. Histochem. J. 34:35-40.

    PubMed  Google Scholar 

  73. M. T. Escaleira, S. Sonohara, and M. M. Brentani (1993). Sex steroids induced up-regulation of 1,25-(OH)2 vitamin D3 receptors in T 47D breast cancer cells. J. Steroid Biochem. Mol. Biol. 45:257-263.

    PubMed  Google Scholar 

  74. C. Chouvet, E. Vicard, M. Devonec, and S. Saez (1986). 1,25-Dihydroxyvitamin D3 inhibitory effect on the growth of two human breast cancer cell lines (MCF-7, BT-20). J. Steroid Biochem. 24:373-376.

    PubMed  Google Scholar 

  75. M. T. Escaleira and M. M. Brentani (1999). Vitamin D3 receptor (VDR) expression in HC-11 mammary cells: Regulation by growth-modulatory agents, differentiation, and Ha-ras transformation. Breast Cancer Res. Treat. 54:123-133.

    PubMed  Google Scholar 

  76. S. P. Xie, G. Pirianov, and K. W. Colston (1999). Vitamin D analogues suppress IGF-I signalling and promote apoptosis in breast cancer cells. Eur. J. Cancer 35:1717-1723.

    PubMed  Google Scholar 

  77. R. R. Mehta, L. Bratescu, J. M. Graves, A. Green, and R. G. Mehta (2000). Differentiation of human breast carcinoma cells by a novel vitamin D analog: 1Alpha-hydroxyvitamin D5. Int. J. Oncol. 16:65-73.

    PubMed  Google Scholar 

  78. L. Verlinden, A. Verstuyf, M. Van Camp, S. Marcelis, K. Sabbe, X. Y. Zhao, P. De Clercq, M. Vandewalle, and R. Bouillon (2000). Two novel 14-Epi-analogues of 1,25-dihydroxyvitamin D3 inhibit the growth of human breast cancer cells in vitro and in vivo. Cancer Res. 60:2673-2679.

    PubMed  Google Scholar 

  79. R. M. Evans (1988). The steroid and thyroid hormone receptor superfamily. Science 240:889-895.

    PubMed  Google Scholar 

  80. K. Schoonjans, G. Martin, B. Staels, and J. Auwerx (1997). Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr. Opin. Lipidol. 8:159-166.

    PubMed  Google Scholar 

  81. K. Schoonjans, B. Staels, and J. Auwerx (1996). The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim. Biophys. Acta. 1302:93-109.

    PubMed  Google Scholar 

  82. J. Berger and D. E. Moller (2002). The mechanisms of action of PPARs. Annu. Rev. Med. 53:409-435.

    PubMed  Google Scholar 

  83. J. Auwerx (1999). PPARgamma, the ultimate thrifty gene. Diabetologia 42:1033-1049.

    PubMed  Google Scholar 

  84. S. Theocharis, H. Kanelli, E. Politi, A. Margeli, C. Karkandaris, T. Philippides, and A. Koutselinis (2002). Expression of peroxisome proliferator activated receptor-gamma in non-small cell lung carcinoma: Correlation with histological type and grade. Lung Cancer 36:249-255.

    PubMed  Google Scholar 

  85. Y. Segawa, R. Yoshimura, T. Hase, T. Nakatani, S. Wada, Y. Kawahito, T. Kishimoto, and H. Sano (2002). Expression of peroxisome proliferator-activated receptor (PPAR) in human prostate cancer. Prostate 51:108-116.

    PubMed  Google Scholar 

  86. K. M. Suchanek, F. J. May, J. A. Robinson, W. J. Lee, N. A. Holman, G. R. Monteith, and S. J. Roberts-Thomson (2002). Peroxisome proliferator-activated receptor alpha in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol. Carcinog. 34:165-171.

    PubMed  Google Scholar 

  87. K. M. Suchanek, F. J. May, W. J. Lee, N. A. Holman, and S. J. Roberts-Thomson (2002). Peroxisome proliferator-activated receptor beta expression in human breast epithelial cell lines of tumorigenic and non-tumorigenic origin. Int. J. Biochem. Cell Biol. 34:1051-1058.

    PubMed  Google Scholar 

  88. A. F. Badawi and M. Z. Badr (2002). Chemoprevention of breast cancer by targeting cyclooxygenase-2 and peroxisome proliferator-activated receptor-gamma (Review). Int. J. Oncol. 20:1109-1122.

    PubMed  Google Scholar 

  89. X. Wang and M. W. Kilgore (2002). Signal cross-talk between estrogen receptor alpha and beta and the peroxisome proliferator-activated receptor gamma1 in MDA-MB-231 and MCF-7 breast cancer cells. Mol. Cell Endocrinol. 194:123-133.

    PubMed  Google Scholar 

  90. M. Pignatelli, M. Cortes-Canteli, C. Lai, A. Santos, and A. Perez-Castillo (2001). The peroxisome proliferator-activated receptor gamma is an inhibitor of ErbBs activity in human breast cancer cells. J. Cell Sci. 114:4117-4126.

    PubMed  Google Scholar 

  91. P. Sarraf, E. Mueller, D. Jones, F. J. King, D. J. DeAngelo, J. B. Partridge, S. A. Holden, L. B. Chen, S. Singer, C. Fletcher, and B. M. Spiegelman (1998). Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat. Med. 4:1046-1052.

    PubMed  Google Scholar 

  92. T. Kubota, K. Koshizuka, E. A. Williamson, H. Asou, J. W. Said, S. Holden, I. Miyoshi, and H. P. Koeffler (1998). Ligand for peroxisome proliferator-activated receptor gamma (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer Res. 58:3344-3352.

    PubMed  Google Scholar 

  93. E. Elstner, C. Muller, K. Koshizuka, E. A. Williamson, D. Park, H. Asou, P. Shintaku, J. W. Said, D. Heber, and H. P. Koeffler (1998). Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc. Natl. Acad. Sci. U. S. A. 95:8806-8811.

    PubMed  Google Scholar 

  94. T. Tanaka, H. Kohno, S. Yoshitani, S. Takashima, A. Okumura, A. Murakami, and M. Hosokawa (2001). Ligands for peroxisome proliferator-activated receptors alpha and gamma inhibit chemically induced colitis and formation of aberrant crypt foci in rats. Cancer Res. 61:2424-2428.

    PubMed  Google Scholar 

  95. E. Saez, P. Tontonoz, M. C. Nelson, J. G. Alvarez, U. T. Ming, S. M. Baird, V. A. Thomazy, and R. M. Evans (1998). Activators of the nuclear receptor PPARgamma enhance colon polyp formation. Nat. Med. 4:1058-1061.

    PubMed  Google Scholar 

  96. A. M. Lefebvre, I. Chen, P. Desreumaux, J. Najib, J. C. Fruchart, K. Geboes, M. Briggs, R. Heyman, and J. Auwerx (1998). Activation of the peroxisome proliferator-activated receptor gamma promotes the development of colon tumors in C57BL/6J-APCMin/+ mice. Nat. Med. 4:1053-1057.

    PubMed  Google Scholar 

  97. M. B. Sporn, N. Suh, and D. J. Mangelsdorf (2001). Prospects for prevention and treatment of cancer with selective PPARgamma modulators (SPARMs). Trends Mol. Med. 7:395-400.

    PubMed  Google Scholar 

  98. E. Osawa, A. Nakajima, K. Wada, S. Ishimine, N. Fujisawa, T. Kawamori, N. Matsuhashi, T. Kadowaki, M. Ochiai, H. Sekihara, and H. Nakagama (2003). Peroxisome proliferator-activated receptor gamma ligands suppress colon carcinogenesis induced by azoxymethane in mice. Gastroenterology 124:361-367.

    PubMed  Google Scholar 

  99. R. G. Mehta, E. Williamson, M. K. Patel, and H. P. Koeffler (2000). A ligand of peroxisome proliferator-activated receptor gamma, retinoids, and prevention of preneoplastic mammary lesions. J. Natl. Cancer Inst. 92:418-423.

    PubMed  Google Scholar 

  100. J. T. Holt, T. V. Gopal, A. D. Moulton, and A. W. Nienhuis (1986). Inducible production of c-fos antisense RNA inhibits 3T3 cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 83:4794-4798.

    PubMed  Google Scholar 

  101. E. Szabo, L. H. Preis, P. H. Brown, and M. J. Birrer (1991). The role of jun and fos gene family members in 12-O-tetradecanoylphorbol-13-acetate induced hemopoietic differentiation. Cell Growth Differ. 2:475-482.

    PubMed  Google Scholar 

  102. J. Ham, C. Babij, J. Whitfield, C. M. Pfarr, D. Lallemand, M. Yaniv, and L. L. Rubin (1995). A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 14:927-939.

    PubMed  Google Scholar 

  103. P. H. Brown, R. Alani, L. H. Preis, E. Szabo, and M. J. Birrer (1993). Suppression of oncogene-induced transformation by a deletion mutant of c-jun. Oncogene 8:877-886.

    PubMed  Google Scholar 

  104. P. H. Brown, T. K. Chen, and M. J. Birrer (1994). Mechanism of action of a dominant-negative mutant of c-Jun. Oncogene 9:791-799.

    PubMed  Google Scholar 

  105. L. M. Matrisian (1994). Matrix metalloproteinase gene expression. Ann. N. Y. Acad. Sci. 732:42-50.

    PubMed  Google Scholar 

  106. P. Angel, I. Baumann, B. Stein, H. Delius, H. J. Rahmsdorf, and P. Herrlich (1987). 12-O-tetradecanoyl-phorbol-13-acetate induction of the human collagenase gene is mediated by an inducible enhancer element located in the 5′-flanking region. Mol. Cell. Biol. 7:2256-2266.

    PubMed  Google Scholar 

  107. S. E. McDonnell, L. D. Kerr, and L. M. Matrisian (1990). Epidermal growth factor stimulation of stromelysin mRNA in rat fibroblasts requires induction of proto-oncogenes c-fos and c-jun and activation of protein kinase C. Mol. Cell. Biol. 10:4284-4293.

    PubMed  Google Scholar 

  108. A. R. Mackay, M. Ballin, M. D. Pelina, A. R. Farina, A. M. Nason, J. L. Hartzler, and U. P. Thorgeirsson (1992). Effect of phorbol ester and cytokines on matrix metalloproteinase and tissue inhibitor of metalloproteinase expression in tumor and normal cell lines. Invasion Metastasis 12:168-184.

    PubMed  Google Scholar 

  109. T. K. Chen, L. M. Smith, D. K. Gebhardt, M. J. Birrer, and P. H. Brown (1996). Activation and inhibition of the AP-1 complex in human breast cancer cells. Mol. Carcinog. 15:215-226.

    PubMed  Google Scholar 

  110. J. H. Ludes-Meyers, Y. Liu, D. Munoz-Medellin, S. G. Hilsenbeck, and P. H. Brown (2001). AP-1 blockade inhibits the growth of normal and malignant breast cells. Oncogene 20:2771-2780.

    PubMed  Google Scholar 

  111. J. M. Gee, A. F. Barroso, I. O. Ellis, J. F. Robertson, and R. I. Nicholson (2000). Biological and clinical associations of c-jun activation in human breast cancer. Int. J. Cancer 89:177-186.

    PubMed  Google Scholar 

  112. A. M. Bamberger, C. Methner, B. W. Lisboa, C. Stadtler, H. M. Schulte, T. Loning, and K. Milde-Langosch (1999). Expression pattern of the AP-1 family in breast cancer: association of fosB expression with a well-differentiated, receptor-positive tumor phenotype. Int. J. Cancer 84:533-538.

    PubMed  Google Scholar 

  113. Z. Tang, I. Treilleux, and M. Brown (1997). A transcriptional enhancer required for the differential expression of the human estrogen receptor in breast cancers. Mol. Cell. Biol. 17:1274-1280.

    PubMed  Google Scholar 

  114. L. M. Smith, S. C. Wise, D. T. Hendricks, A. L. Sabichi, T. Bos, P. Reddy, P. H. Brown, and M. J. Birrer (1999). cJun overexpression in MCF-7 breast cancer cells produces a tumorigenic, invasive and hormone resistant phenotype. Oncogene 18:6063-6070.

    PubMed  Google Scholar 

  115. R. Schiff, P. Reddy, M. Ahotupa, E. Coronado-Heinsohn, M. Grim, S. G. Hilsenbeck, R. Lawrence, S. Deneke, R. Herrera, G. C. Chamness, S. A. Fuqua, P. H. Brown, and C. K. Osborne (2000). Oxidative stress and AP-1 activity in tamoxifen-resistant breast tumors in vivo. J. Natl. Cancer Inst. 92:1926-1934.

    PubMed  Google Scholar 

  116. S. R. Johnston, B. Lu, G. K. Scott, P. J. Kushner, I. E. Smith, M. Dowsett, and C. C. Benz (1999). Increased activator protein-1 DNA binding and c-Jun NH2-terminal kinase activity in human breast tumors with acquired tamoxifen resistance. Clin. Cancer Res. 5:251-256.

    PubMed  Google Scholar 

  117. P. J. Daschner, H. P. Ciolino, C. A. Plouzek, and G. C. Yeh (1999). Increased AP-1 activity in drug resistant human breast cancer MCF-7 cells. Breast Cancer Res. Treat. 53:229-240.

    PubMed  Google Scholar 

  118. Y. Liu, J. Ludes-Meyers, Y. Zhang, D. Munoz-Medellin, H. T. Kim, C. Lu, G. Ge, R. Schiff, S. G. Hilsenbeck, C. K. Osborne, and P. H. Brown (2002). Inhibition of AP-1 transcription factor causes blockade of multiple signal transduction pathways and inhibits breast cancer growth. Oncogene 21:7680-7689.

    PubMed  Google Scholar 

  119. M. R. Young, J. J. Li, M. Rincon, R. A. Flavell, B. K. Sathyanarayana, R. Hunziker, and N. Colburn (1999). Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. Proc. Natl. Acad. Sci. U. S. A. 96:9827-9832.

    PubMed  Google Scholar 

  120. M. Morikawa, R. A. Shorthouse, M. J. Suto, M. E. Goldman, and R. E. Morris (1997). A novel inhibitor of nuclear factor-kappa B and activator protein-1 transcription factors in T cells suppresses host-versus-graft alloreactivity in vivo. Transplant. Proc. 29:1269-1270.

    PubMed  Google Scholar 

  121. J. Ishida, H. Ohtsu, Y. Tachibana, Y. Nakanishi, K. F. Bastow, M. Nagai, H. K. Wang, H. Itokawa, and K. H. Lee (2002). Antitumor agents. Part 214: Synthesis and evaluation of curcumin analogues as cytotoxic agents. Bioorg Med. Chem. 10:3481-3487.

    PubMed  Google Scholar 

  122. H. Inano, M. Onoda, N. Inafuku, M. Kubota, Y. Kamada, T. Osawa, H. Kobayashi, and K. Wakabayashi (1999). Chemoprevention by curcumin during the promotion stage of tumorigenesis of mammary gland in rats irradiated with gamma-rays. Carcinogenesis 20:1011-1018.

    PubMed  Google Scholar 

  123. K. Singletary and C. MacDonald (2000). Inhibition of benzo[a]pyrene-and 1,6-dinitropyrene-DNA adduct formation in human mammary epithelial cells by dibenzoylmethane and sulforaphane. Cancer Lett. 155:47-54.

    PubMed  Google Scholar 

  124. F. Chen, V. Castranova, and X. Shi (2001). New insights into the role of nuclear factor-kappaB in cell growth regulation. Am. J. Pathol. 159:387-397.

    PubMed  Google Scholar 

  125. M. Karin and Y. Ben-Neriah (2000). Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annu. Rev. Immunol. 18:621-663.

    PubMed  Google Scholar 

  126. H. L. Pahl (1999). Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18:6853-6866.

    PubMed  Google Scholar 

  127. T. D. Gilmore (1999). The Rel/NF-kappaB signal transduction pathway: Introduction. Oncogene 18:6842-6844.

    PubMed  Google Scholar 

  128. J. C. Pena, C. B. Thompson, W. Recant, E. E. Vokes, and C. M. Rudin (1999). Bcl-xL and Bcl-2 expression in squamous cell carcinoma of the head and neck. Cancer 85:164-170.

    PubMed  Google Scholar 

  129. S. Kondo, Y. Shinomura, S. Kanayama, Y. Higashimoto, J. I. Miyagawa, T. Minami, T. Kiyohara, S. Zushi, S. Kitamura, K. Isozaki, and Y. Matsuzawa (1996). Over-expression of bcl-xL gene in human gastric adenomas and carcinomas. Int. J. Cancer 68:727-730.

    PubMed  Google Scholar 

  130. S. Nasi, R. Ciarapica, R. Jucker, J. Rosati, and L. Soucek (2001). Making decisions through Myc. FEBS Lett. 490:153-162.

    PubMed  Google Scholar 

  131. I. V. Boiko, M. F. Mitchell, W. Hu, D. K. Pandey, P. Mathevet, A. Malpica, and W. N. Hittelman (1998). Epidermal growth factor receptor expression in cervical intraepithelial neoplasia and its modulation during an alpha-difluoromethylornithine chemoprevention trial. Clin. Cancer Res. 4:1383-1391.

    PubMed  Google Scholar 

  132. J. Langenfeld, H. Kiyokawa, D. Sekula, J. Boyle, and E. Dmitrovsky (1997). Posttranslational regulation of cyclin D1 by retinoic acid: A chemoprevention mechanism. Proc. Natl. Acad. Sci. U. S. A. 94:12070-12074.

    PubMed  Google Scholar 

  133. S. Philip, A. Bulbule, and G. C. Kundu (2001). Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. J. Biol. Chem. 276:44926-44935.

    PubMed  Google Scholar 

  134. E. Heiss, C. Herhaus, K. Klimo, H. Bartsch, and C. Gerhauser (2001). Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J. Biol. Chem. 276:32008-32015.

    PubMed  Google Scholar 

  135. R. Romieu-Mourez, E. Landesman-Bollag, D. C. Seldin, and G. E. Sonenshein (2002). Protein kinase CK2 promotes aberrant activation of nuclear factor-kappaB, transformed phenotype, and survival of breast cancer cells. Cancer Res. 62:6770-6778.

    PubMed  Google Scholar 

  136. V. Deregowski, S. Delhalle, V. Benoit, V. Bours, and M. P. Merville (2002). Identification of cytokine-induced nuclear factor-kappaB target genes in ovarian and breast cancer cells. Biochem. Pharmacol. 64:873-881.

    PubMed  Google Scholar 

  137. D. Sliva, C. Labarrere, V. Slivova, M. Sedlak, F. P. Lloyd Jr., and N. W. Ho (2002). Ganoderma lucidum suppresses motility of highly invasive breast and prostate cancer cells. Biochem. Biophys. Res. Commun. 298:603-612.

    PubMed  Google Scholar 

  138. D. M. Brantley, C. L. Chen, R. S. Muraoka, P. B. Bushdid, J. L. Bradberry, F. Kittrell, D. Medina, L. M. Matrisian, L. D. Kerr, and F. E. Yull (2001). Nuclear factor-kappaB (NF-kappaB) regulates proliferation and branching in mouse mammary epithelium. Mol. Biol. Cell. 12:1445-1455.

    PubMed  Google Scholar 

  139. L. M. Varela, N. C. Stangle-Castor, S. F. Shoemaker, W. K. Shea-Eaton, and M. M. Ip (2001). TNFalpha induces NFkappaB/p50 in association with the growth and morphogenesis of normal and transformed rat mammary epithelial cells. J. Cell. Physiol. 188:120-131.

    PubMed  Google Scholar 

  140. A. C. Bharti and B. B. Aggarwal (2002). Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem. Pharmacol. 64:883-888.

    PubMed  Google Scholar 

  141. J. S. Kang, Y. J. Jeon, H. M. Kim, S. H. Han, and K. H. Yang (2002). Inhibition of inducible nitric-oxide synthase expression by silymarin in lipopolysaccharide-stimulated macrophages. J. Pharmacol. Exp. Ther. 302:138-144.

    PubMed  Google Scholar 

  142. S. K. Manna, N. K. Sah, R. A. Newman, A. Cisneros, and B. B. Aggarwal (2000). Oleandrin suppresses activation of nuclear transcription factor-kappaB, activator protein-1, and c-Jun NH2-terminal kinase. Cancer Res. 60:3838-3847.

    PubMed  Google Scholar 

  143. K. Ashikawa, S. Majumdar, S. Banerjee, A. C. Bharti, S. Shishodia, and B. B. Aggarwal (2002). Piceatannol inhibits TNF-induced NF-kappaB activation and NF-kappaB-mediated gene expression through suppression of IkappaBalpha kinase and p65 phosphorylation. J. Immunol. 169:6490-6497.

    PubMed  Google Scholar 

  144. A. Kumar, S. Dhawan, and B. B. Aggarwal (1998). Emodin (3-methyl-1,6,8-trihydroxyanthraquinone) inhibits TNF-induced NF-kappaB activation, IkappaB degradation, and expression of cell surface adhesion proteins in human vascular endothelial cells. Oncogene 17:913-918.

    PubMed  Google Scholar 

  145. C. Tan and T. A. Waldmann (2002). Proteasome inhibitor PS-341, a potential therapeutic agent for adult T-cell leukemia. Cancer Res. 62:1083-1086.

    PubMed  Google Scholar 

  146. N. Mitsiades, C. S. Mitsiades, V. Poulaki, D. Chauhan, P. G. Richardson, T. Hideshima, N. C. Munshi, S. P. Treon, and K. C. Anderson (2002). Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: Therapeutic implications. Blood 99:4525-4530.

    PubMed  Google Scholar 

  147. C. Schindler and J. E. Darnell Jr. (1995). Transcriptional responses to polypeptide ligands: The JAK-STAT pathway. Annu. Rev. Biochem. 64:621-651.

    PubMed  Google Scholar 

  148. J. N. Ihle and I. M. Kerr (1995). Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet. 11:69-74.

    PubMed  Google Scholar 

  149. D. E. Levy and J. E. Darnell Jr. (2002). Stats: Transcriptional control and biological impact. Nat. Rev. Mol. Cell. Biol. 3:651-662.

    PubMed  Google Scholar 

  150. R. Garcia, T. L. Bowman, G. Niu, H. Yu, S. Minton, C. A. Muro-Cacho, C. E. Cox, R. Falcone, R. Fairclough, S. Parsons, A. Laudano, A. Gazit, A. Levitzki, A. Kraker, and R. Jove (2001). Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20:2499-2513.

    PubMed  Google Scholar 

  151. L. Hennighausen, G. W. Robinson, K. U. Wagner, and X. Liu (1997). Developing a mammary gland is a stat affair. J. Mam. Gland Biol. Neoplasia 2:365-372.

    Google Scholar 

  152. G. Berclaz, H. J. Altermatt, V. Rohrbach, A. Siragusa, E. Dreher, and P. D. Smith (2001). EGFR dependent expression of STAT3 (but not STAT1) in breast cancer. Int. J. Oncol. 19:1155-1160.

    PubMed  Google Scholar 

  153. E. Iavnilovitch, B. Groner, and I. Barash (2002). Overexpression and forced activation of stat5 in mammary gland of transgenic mice promotes cellular proliferation, enhances differentiation, and delays postlactational apoptosis. Mol. Cancer Res. 1:32-47.

    PubMed  Google Scholar 

  154. X. Liu, G. W. Robinson, K. U. Wagner, L. Garrett, A. Wynshaw-Boris, and L. Hennighausen (1997). Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 11:179-186.

    PubMed  Google Scholar 

  155. S. Ren, H. R. Cai, M. Li, and P. A. Furth (2002). Loss of Stat5a delays mammary cancer progression in a mouse model. Oncogene 21:4335-4339.

    PubMed  Google Scholar 

  156. G. L. Johnson and R. Lapadat (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911-1912.

    PubMed  Google Scholar 

  157. G. Pearson, F. Robinson, T. Beers Gibson, B. E. Xu, M. Karandikar, K. Berman, and M. H. Cobb (2001). Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev. 22:153-183.

    PubMed  Google Scholar 

  158. G. Zhou, Z. Q. Bao, and J. E. Dixon (1995). Components of a new human protein kinase signal transduction pathway. J. Biol. Chem. 270:12665-12669.

    PubMed  Google Scholar 

  159. M. K. Abe, M. P. Saelzler, R. Espinosa, 3rd, K. T. Kahle, M. B. Hershenson, M. M. Le Beau, and M. R. Rosner (2002). ERK8, a new member of the mitogen-activated protein kinase family. J. Biol. Chem. 277:16733-16743.

    PubMed  Google Scholar 

  160. M. K. Abe, K. T. Kahle, M. P. Saelzler, K. Orth, J. E. Dixon, and M. R. Rosner (2001). ERK7 is an autoactivated member of the MAPK family. J. Biol. Chem. 276:21272-21279.

    PubMed  Google Scholar 

  161. C. R. Weinstein-Oppenheimer, W. L. Blalock, L. S. Steelman, F. Chang, and J. A. McCubrey (2000). The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors. Pharmacol. Ther. 88:229-279.

    PubMed  Google Scholar 

  162. P. W. Janes, R. J. Daly, A. deFazio, and R. L. Sutherland (1994). Activation of the Ras signalling pathway in human breast cancer cells overexpressing erbB-2. Oncogene 9:3601-3608.

    PubMed  Google Scholar 

  163. B. Salh, A. Marotta, C. Matthewson, M. Ahluwalia, J. Flint, D. Owen, and S. Pelech (1999). Investigation of the Mek-MAP kinase-Rsk pathway in human breast cancer. Anticancer Res. 19:731-740.

    PubMed  Google Scholar 

  164. L. R. Howe, K. Subbaramaiah, A. M. Brown, and A. J. Dannenberg (2001). Cyclooxygenase-2: A target for the prevention and treatment of breast cancer. Endocr. Relat. Cancer 8:97-114.

    PubMed  Google Scholar 

  165. R. D. Nolan, R. M. Danilowicz, and T. E. Eling (1988). Role of arachidonic acid metabolism in the mitogenic response of BALB/c 3T3 fibroblasts to epidermal growth factor. Mol. Pharmacol. 33:650-656.

    PubMed  Google Scholar 

  166. G. K. Bandyopadhyay, W. Imagawa, D. Wallace, and S. Nandi (1987). Linoleate metabolites enhance the in vitro proliferative response of mouse mammary epithelial cells to epidermal growth factor. J. Biol. Chem. 262:2750-2756.

    PubMed  Google Scholar 

  167. Y. Takahashi, F. Kawahara, M. Noguchi, K. Miwa, H. Sato, M. Seiki, H. Inoue, T. Tanabe, and T. Yoshimoto (1999). Activation of matrix metalloproteinase-2 in human breast cancer cells overexpressing cyclooxygenase-1 or-2. FEBS Lett. 460:145-148.

    PubMed  Google Scholar 

  168. P. H. Rolland, P. M. Martin, J. Jacquemier, A. M. Rolland, and M. Toga (1980). Prostaglandin in human breast cancer: Evidence suggesting that an elevated prostaglandin production is a marker of high metastatic potential for neoplastic cells. J. Natl. Cancer Inst. 64:1061-1070.

    PubMed  Google Scholar 

  169. E. M. Gilhooly and D. P. Rose (1999). The association between a mutated ras gene and cyclooxygenase-2 expression in human breast cancer cell lines. Int. J. Oncol. 15:267-270.

    PubMed  Google Scholar 

  170. R. A. Soslow, A. J. Dannenberg, D. Rush, B. M. Woerner, K. N. Khan, J. Masferrer, and A. T. Koki (2000). COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89:2637-2645.

    PubMed  Google Scholar 

  171. J. L. Masferrer, K. M. Leahy, A. T. Koki, B. S. Zweifel, S. L. Settle, B. M. Woerner, D. A. Edwards, A. G. Flickinger, R. J. Moore, and K. Seibert (2000). Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 60:1306-1311.

    PubMed  Google Scholar 

  172. F. M. Robertson, M. L. Parrett, F. S. Joarder, M. Ross, H. M. Abou-Issa, G. Alshafie, and R. E. Harris (1998). Ibuprofen-induced inhibition of cyclooxygenase isoform gene expression and regression of rat mammary carcinomas. Cancer Lett. 122:165-175.

    PubMed  Google Scholar 

  173. S. Nakatsugi, T. Ohta, T. Kawamori, M. Mutoh, T. Tanigawa, K. Watanabe, S. Sugie, T. Sugimura, and K. Wakabayashi (2000). Chemoprevention by nimesulide, a selective cyclooxygenase-2 inhibitor, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced mammary gland carcinogenesis in rats. Jpn. J. Cancer Res. 91:886-892.

    PubMed  Google Scholar 

  174. G. A. Alshafie, H. M. Abou-Issa, K. Seibert, and R. E. Harris (2000). Chemotherapeutic evaluation of Celecoxib, a cyclooxygenase-2 inhibitor, in a rat mammary tumor model. Oncol. Rep. 7:1377-1381.

    PubMed  Google Scholar 

  175. R. E. Harris, G. A. Alshafie, H. Abou-Issa, and K. Seibert (2000). Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res. 60:2101-2103.

    PubMed  Google Scholar 

  176. L. R. Howe, K. Subbaramaiah, J. Patel, J. L. Masferrer, A. Deora, C. Hudis, H. T. Thaler, W. J. Muller, B. Du, A. M. Brown, and A. J. Dannenberg (2002). Celecoxib, a selective cyclooxygenase 2 inhibitor, protects against human epidermal growth factor receptor 2 (HER-2)/neu-induced breast cancer. Cancer Res. 62:5405-5407.

    PubMed  Google Scholar 

  177. H. M. Abou-Issa, G. A. Alshafie, K. Seibert, A. T. Koki, J. L. Masferrer, and R. E. Harris (2001). Dose-response effects of the COX-2 inhibitor, celecoxib, on the chemoprevention of mammary carcinogenesis. Anticancer Res. 21:3425-3432.

    PubMed  Google Scholar 

  178. D. O. Stichtenoth and J. C. Frolich (2003). The second generation of COX-2 Inhibitors: What advantages do the newest offer? Drugs 63:33-45.

    PubMed  Google Scholar 

  179. C. W. Ryan, W. M. Stadler, and N. J. Vogelzang (2001). Docetaxel and exisulind in hormone-refractory prostate cancer. Semin. Oncol. 28:56-61.

    Google Scholar 

  180. G. J. Griffiths (2000). Exisulind cell pathways. Curr. Opin. Investig. Drugs 1:386-391.

    PubMed  Google Scholar 

  181. P. A. Bunn Jr., D. C. Chan, K. Earle, T. L. Zhao, B. Helfrich, K. Kelly, G. Piazza, C. M. Whitehead, R. Pamukcu, W. Thompson, and H. Alila (2002). Preclinical and clinical studies of docetaxel and exisulind in the treatment of human lung cancer. Semin. Oncol. 29:87-94.

    Google Scholar 

  182. R. S. Herbst and M. S. Kies (2002). ZD1839 (Iressa) in non-small cell lung cancer. Oncologist 7(Suppl 4):9-15.

    Google Scholar 

  183. A. E. Wakeling, S. P. Guy, J. R. Woodburn, S. E. Ashton, B. J. Curry, A. J. Barker, and K. H. Gibson (2002). ZD1839 (Iressa): An orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 62:5749-5754.

    PubMed  Google Scholar 

  184. C. Lu, C. Speers, Y. Zhang, X. Xu, J. Hill, E. Steinbis, J. Celestino, Q. Shen, H. Kim, S. G. Hilsenbeck, S. K. Mohsin, A. Wakeling, K. Osborne, and P. H. Brown (in press). The EGFR inhibitor ZD1839 (Gefitinib, “Iressa”) suppresses the development of estrogen receptor-negative mammary tumors in transgenic mice. J. Natl. Cancer Inst.

  185. J. S. de Bono and E. K. Rowinsky (2002). The ErbB receptor family: A therapeutic target for cancer. Trends Mol. Med. 8:S19-S26.

    PubMed  Google Scholar 

  186. S. S. Ng, M. S. Tsao, T. Nicklee, and D. W. Hedley (2002). Effects of the epidermal growth factor receptor inhibitor OSI-774, Tarceva, on downstream signaling pathways and apoptosis in human pancreatic adenocarcinoma. Mol. Cancer Ther. 1:777-783.

    PubMed  Google Scholar 

  187. J. Baselga and L. A. Hammond (2002). HER-targeted tyrosine-kinase inhibitors. Oncology 63(Suppl. 1):6-16.

    Google Scholar 

  188. H. Q. Xiong and J. L. Abbruzzese (2002). Epidermal growth factor receptor-targeted therapy for pancreatic cancer. Semin. Oncol. 29:31-37.

    Google Scholar 

  189. L. F. Allen, P. F. Lenehan, I. A. Eiseman, W. L. Elliott, and D. W. Fry (2002). Potential benefits of the irreversible pan-erbB inhibitor, CI-1033, in the treatment of breast cancer. Semin. Oncol. 29:11-21.

    Google Scholar 

  190. A. Wissner, M. B. Brawner Floyd, S. K. Rabindran, R. Nilakantan, L. M. Greenberger, R. Shen, Y. F. Wang, and H. R. Tsou (2002). Syntheses and EGFR and HER-2 kinase inhibitory activities of 4-anilinoquinoline-3-carbonitriles: Analogues of three important 4-anilinoquinazolines currently undergoing clinical evaluation as therapeutic antitumor agents. Bioorg. Med. Chem. Lett. 12:2893-2897.

    PubMed  Google Scholar 

  191. J. Baselga, D. Rischin, M. Ranson, H. Calvert, E. Raymond, D. G. Kieback, S. B. Kaye, L. Gianni, A. Harris, T. Bjork, S. D. Averbuch, A. Feyereislova, H. Swaisland, F. Rojo, and J. Albanell (2002). Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J. Clin. Oncol. 20:4292-4302.

    PubMed  Google Scholar 

  192. M. A. Gieseg, C. de Bock, L. R. Ferguson, and W. A. Denny (2001). Evidence for epidermal growth factor receptor-enhanced chemosensitivity in combinations of cisplatin and the new irreversible tyrosine kinase inhibitor CI-1033. Anticancer Drugs 12:683-690.

    PubMed  Google Scholar 

  193. R. J. Gilbertson, L. Bentley, R. Hernan, T. T. Junttila, A. J. Frank, H. Haapasalo, M. Connelly, C. Wetmore, T. Curran, K. Elenius, and D. W. Ellison (2002). ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clin. Cancer Res. 8:3054-3064.

    PubMed  Google Scholar 

  194. G. K. Dy and A. A. Adjei (2002). Farnesyltransferase inhibitors in breast cancer therapy. Cancer Invest. 20(Suppl 2):30-37.

    PubMed  Google Scholar 

  195. F. Caponigro (2002). Farnesyl transferase inhibitors: A major breakthrough in anticancer therapy? Naples, 12 April 2002. Anticancer Drugs 13:891-897.

    PubMed  Google Scholar 

  196. J. E. Lancet, J. D. Rosenblatt, and J. E. Karp (2002). Farnesyltransferase inhibitors and myeloid malignancies: Phase I evidence of Zarnestra activity in high-risk leukemias. Semin. Hematol. 39:31-35.

    PubMed  Google Scholar 

  197. M. Crul, G. J. de Klerk, M. Swart, L. J. van't Veer, D. de Jong, L. Boerrigter, P. A. Palmer, C. J. Bol, H. Tan, G. C. de Gast, J. H. Beijnen, and J. H. Schellens (2002). Phase I clinical and pharmacologic study of chronic oral administration of the farnesyl protein transferase inhibitor R115777 in advanced cancer. J. Clin. Oncol. 20:2726-2735.

    PubMed  Google Scholar 

  198. A. Awada, F. A. Eskens, M. Piccart, D. L. Cutler, A. van der Gaast, H. Bleiberg, J. Wanders, M. N. Faber, P. Statkevich, P. Fumoleau, and J. Verweij (2002). Phase I and pharmacological study of the oral farnesyltransferase inhibitor SCH 66336 given once daily to patients with advanced solid tumours. Eur. J. Cancer 38:2272-2278.

    PubMed  Google Scholar 

  199. P. Norgaard, B. Law, H. Joseph, D. L. Page, Y. Shyr, D. Mays, J. A. Pietenpol, N. E. Kohl, A. Oliff, R. J. Coffey Jr., H. S. Poulsen, and H. L. Moses (1999). Treatment with farnesyl-protein transferase inhibitor induces regression of mammary tumors in transforming growth factor (TGF) alpha and TGF alpha/neu transgenic mice by inhibition of mitogenic activity and induction of apoptosis. Clin. Cancer Res. 5:35-42.

    PubMed  Google Scholar 

  200. R. A. Alcock, S. Dey, D. Chendil, M. S. Inayat, M. Mohiuddin, G. Hartman, L. K. Chatfield, V. S. Gallicchio, and M. M. Ahmed (2002). Farnesyltransferase inhibitor (L-744,832) restores TGF-beta type II receptor expression and enhances radiation sensitivity in K-ras mutant pancreatic cancer cell line MIA PaCa-2. Oncogene 21:7883-7890.

    PubMed  Google Scholar 

  201. L. Sepp-Lorenzino, G. Tjaden, M. M. Moasser, N. Timaul, Z. Ma, N. E. Kohl, J. B. Gibbs, A. Oliff, N. Rosen, and H. I. Scher (2001). Farnesyl: Protein transferase inhibitors as potential agents for the management of human prostate cancer. Prostate Cancer Prostatic Dis. 4:33-43.

    PubMed  Google Scholar 

  202. K. L. van Golen, L. Bao, M. M. DiVito, Z. Wu, G. C. Prendergast, and S. D. Merajver (2002). Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor. Mol. Cancer Ther. 1:575-583.

    PubMed  Google Scholar 

  203. W. G. McKenna, R. J. Muschel, A. K. Gupta, S. M. Hahn, and E. J. Bernhard (2002). Farnesyltransferase inhibitors as radiation sensitizers. Semin. Radiat. Oncol. 12:27-32.

    PubMed  Google Scholar 

  204. S. M. Hahn, E. J. Bernhard, W. Regine, M. Mohiuddin, D. G. Haller, J. P. Stevenson, D. Smith, B. Pramanik, J. Tepper, T. F. DeLaney, K. D. Kiel, B. Morrison, P. Deutsch, R. J. Muschel, and W. G. McKenna (2002). A Phase I trial of the farnesyltransferase inhibitor L-778,123 and radiotherapy for locally advanced lung and head and neck cancer. Clin. Cancer Res. 8:1065-1072.

    PubMed  Google Scholar 

  205. M. J. Donaldson, V. Skoumas, M. Watson, P. A. Ashworth, H. Ryder, M. Moore, and R. C. Coombes (1999). XR3054, structurally related to limonene, is a novel inhibitor of farnesyl protein transferase. Eur. J. Cancer 35:1014-1019.

    PubMed  Google Scholar 

  206. J. F. Lyons, S. Wilhelm, B. Hibner, and G. Bollag (2001). Discovery of a novel Raf kinase inhibitor. Endocr. Relat. Cancer 8:219-225.

    PubMed  Google Scholar 

  207. S. J. Hotte and H. W. Hirte (2002). BAY 43-9006: early clinical data in patients with advanced solid malignancies. Curr. Pharm. Des. 8:2249-2253.

    PubMed  Google Scholar 

  208. C. M. Rudin, J. Holmlund, G. F. Fleming, S. Mani, W. M. Stadler, P. Schumm, B. P. Monia, J. F. Johnston, R. Geary, R. Z. Yu, T. J. Kwoh, F. A. Dorr, and M. J. Ratain (2001). Phase I Trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-raf-1, administered by 24-hour weekly infusion to patients with advanced cancer. Clin. Cancer Res. 7:1214-1220.

    PubMed  Google Scholar 

  209. A. W. Tolcher, L. Reyno, P. M. Venner, S. D. Ernst, M. Moore, R. S. Geary, K. Chi, S. Hall, W. Walsh, A. Dorr, and E. Eisenhauer (2002). A randomized phase II and pharmacokinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer. Clin. Cancer Res. 8:2530-2535.

    PubMed  Google Scholar 

  210. M. C. Cripps, A. T. Figueredo, A. M. Oza, M. J. Taylor, A. L. Fields, J. T. Holmlund, L. W. McIntosh, R. S. Geary, and E. A. Eisenhauer (2002). Phase II randomized study of ISIS 3521 and ISIS 5132 in patients with locally advanced or metastatic colorectal cancer: A National Cancer Institute of Canada clinical trials group study. Clin. Cancer Res. 8:2188-2192.

    PubMed  Google Scholar 

  211. B. Coudert, A. Anthoney, W. Fiedler, J. P. Droz, V. Dieras, M. Borner, J. F. Smyth, R. Morant, M. J. de Vries, M. Roelvink, and P. Fumoleau (2001). Phase II trial with ISIS 5132 in patients with small-cell (SCLC) and non-small cell (NSCLC) lung cancer. A European Organization for Research and Treatment of Cancer (EORTC) Early Clinical Studies Group report. Eur. J. Cancer 37:2194-2198.

    PubMed  Google Scholar 

  212. S. Soga, S. V. Sharma, Y. Shiotsu, M. Shimizu, H. Tahara, K. Yamaguchi, Y. Ikuina, C. Murakata, T. Tamaoki, J. Kurebayashi, T. W. Schulte, L. M. Neckers, and S. Akinaga (2001). Stereospecific antitumor activity of radicicol oxime derivatives. Cancer Chemother. Pharmacol. 48:435-445.

    PubMed  Google Scholar 

  213. A. D. Basso, D. B. Solit, P. N. Munster, and N. Rosen (2002). Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene 21:1159-1166.

    PubMed  Google Scholar 

  214. A. S. Clark, K. West, S. Streicher, and P. A. Dennis (2002). Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol. Cancer Ther. 1:707-717.

    PubMed  Google Scholar 

  215. F. Wang, R. K. Hansen, D. Radisky, T. Yoneda, M. H. Barcellos-Hoff, O. W. Petersen, E. A. Turley, and M. J. Bissell (2002). Phenotypic reversion or death of cancer cells by altering signaling pathways in three-dimensional contexts. J. Natl. Cancer Inst. 94:1494-1503.

    PubMed  Google Scholar 

  216. S. Semba, N. Itoh, M. Ito, E. M. Youssef, M. Harada, T. Moriya, W. Kimura, and M. Yamakawa (2002). Down-regulation of PIK3CG, a catalytic subunit of phosphatidylinositol 3-OH kinase, by CpG hypermethylation in human colorectal carcinoma. Clin. Cancer Res. 8:3824-3831.

    PubMed  Google Scholar 

  217. J. Matsumoto, M. Kaneda, M. Tada, J. Hamada, S. Okushiba, S. Kondo, H. Katoh, and T. Moriuchi (2002). Differential mechanisms of constitutive Akt/PKB activation and its influence on gene expression in pancreatic cancer cells. Jpn. J. Cancer Res. 93:1317-1326.

    PubMed  Google Scholar 

  218. L. P. Weng, W. M. Smith, P. L. Dahia, U. Ziebold, E. Gil, J. A. Lees, and C. Eng (1999). PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Cancer Res. 59:5808-5814.

    PubMed  Google Scholar 

  219. T. G. Ram, H. L. Hosick, and S. P. Ethier (2000). Heregulin-beta is especially potent in activating phosphatidylinositol 3-kinase in nontransformed human mammary epithelial cells. J. Cell. Physiol. 183:301-313.

    PubMed  Google Scholar 

  220. U. Hermanto, C. S. Zong, and L. H. Wang (2000). Inhibition of mitogen-activated protein kinase kinase selectively inhibits cell proliferation in human breast cancer cells displaying enhanced insulin-like growth factor I-mediated mitogen-activated protein kinase activation. Cell Growth Differ. 11:655-664.

    PubMed  Google Scholar 

  221. R. Jaster, G. Sparmann, J. Emmrich, and S. Liebe (2002). Extracellular signal regulated kinases are key mediators of mitogenic signals in rat pancreatic stellate cells. Gut 51:579-584.

    PubMed  Google Scholar 

  222. K. Kingsley, J. L. Huff, W. L. Rust, K. Carroll, A. M. Martinez, M. Fitchmun, and G. E. Plopper (2002). ERK1/2 mediates PDGF-BB stimulated vascular smooth muscle cell proliferation and migration on laminin-5. Biochem. Biophys. Res. Commun. 293:1000-1006.

    PubMed  Google Scholar 

  223. F. Romerio and D. Zella (2002). MEK and ERK inhibitors enhance the anti-proliferative effect of interferon-alpha2b. Faseb J 16:1680-1682.

    PubMed  Google Scholar 

  224. S. B. Gauld, D. Blair, C. A. Moss, S. D. Reid, and M. M. Harnett (2002). Differential roles for extracellularly regulated kinase-mitogen-activated protein kinase in B cell antigen receptor-induced apoptosis and CD40-mediated rescue of WEHI-231 immature B cells. J. Immunol. 168:3855-3864.

    PubMed  Google Scholar 

  225. H. Xin, Y. Geng, R. Pramanik, and D. Choubey (2003). Induction of p202, a modulator of apoptosis, during oncogenic transformation of NIH 3T3 cells by activated H-Ras (Q61L) contributes to cell survival. J. Cell Biochem. 88:191-204.

    PubMed  Google Scholar 

  226. J. S. Sebolt-Leopold, D. T. Dudley, R. Herrera, K. Van Becelaere, A. Wiland, R. C. Gowan, H. Tecle, S. D. Barrett, A. Bridges, S. Przybranowski, W. R. Leopold, and A. R. Saltiel (1999). Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat. Med. 5:810-816.

    PubMed  Google Scholar 

  227. M. Guo, A. Joiakim, D. T. Dudley, and J. J. Reiners (2001). Suppression of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated CYP1A1 and CYP1B1 induction by 12-O-tetradecanoylphorbol-13-acetate: Role of transforming growth factor beta and mitogen-activated protein kinases. Biochem. Pharmacol. 62:1449-1457.

    PubMed  Google Scholar 

  228. S. Chow, H. Patel, and D. W. Hedley (2001). Measurement of MAP kinase activation by flow cytometry using phospho-specific antibodies to MEK and ERK: Potential for pharmacodynamic monitoring of signal transduction inhibitors. Cytometry 46:72-78.

    PubMed  Google Scholar 

  229. N. Zhang, B. Wu, N. Eudy, Y. Wang, F. Ye, D. Powell, A. Wissner, L. R. Feldberg, S. C. Kim, R. Mallon, E. D. Kovacs, L. Toral-Barza, and C. A. Kohler (2001). MEK (MAPKK) inhibitors. Part 2: structure-activity relationships of 4-anilino-3-cyano-6,7-dialkoxyquinolines. Bioorg. Med. Chem. Lett. 11:1407-1410.

    PubMed  Google Scholar 

  230. N. Zhang, B. Wu, A. Wissner, D. W. Powell, S. K. Rabindran, C. Kohler, and F. Boschelli (2002). 4-Anilino-3-cyanobenzo[g]quinolines as kinase inhibitors. Bioorg. Med. Chem. Lett. 12:423-425.

    PubMed  Google Scholar 

  231. N. Zhang, B. Wu, D. Powell, A. Wissner, M. B. Floyd, E. D. Kovacs, L. Toral-Barza, and C. Kohler (2000). Synthesis and structure-activity relationships of 3-cyano-4-(phenoxyanilino)quinolines as MEK (MAPKK) inhibitors. Bioorg. Med. Chem. Lett. 10:2825-2828.

    PubMed  Google Scholar 

  232. T. van der Bruggen, S. Nijenhuis, E. van Raaij, J. Verhoef, and B. S. van Asbeck (1999). Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the raf-1/MEK1-MEK2/ERK1-ERK2 pathway. Infect. Immun. 67:3824-3829.

    PubMed  Google Scholar 

  233. A. Zhao, S. H. Lee, M. Mojena, R. G. Jenkins, D. R. Patrick, H. E. Huber, M. A. Goetz, O. D. Hensens, D. L. Zink, D. Vilella, A. W. Dombrowski, R. B. Lingham, and L. Huang (1999). Resorcylic acid lactones: Naturally occurring potent and selective inhibitors of MEK. J. Antibiot. (Tokyo) 52:1086-1094.

    Google Scholar 

  234. K. Takehana, S. Sato, T. Kobayasi, and T. Maeda (1999). A radicicol-related macrocyclic nonaketide compound, antibiotic LL-Z1640-2, inhibits the JNK/p38 pathways in signal-specific manner. Biochem. Biophys. Res. Commun. 257:19-23.

    PubMed  Google Scholar 

  235. B. Sanna, M. Debidda, G. Pintus, B. Tadolini, A. M. Posadino, F. Bennardini, G. Sava, and C. Ventura (2002). The anti-metastatic agent imidazolium trans-imidazoledimethylsulfoxide-tetrachlororuthenate induces endothelial cell apoptosis by inhibiting the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway. Arch. Biochem. Biophys. 403:209-218.

    PubMed  Google Scholar 

  236. K. Y. Horiuchi, P. A. Scherle, J. M. Trzaskos, and R. A. Copeland (1998). Competitive inhibition of MAP kinase activation by a peptide representing the alpha C helix of ERK. Biochemistry 37:8879-8885.

    PubMed  Google Scholar 

  237. L. Montero and Y. Nagamine (1999). Regulation by p38 mitogen-activated protein kinase of adenylate-and uridylate-rich element-mediated urokinase-type plasminogen activator (uPA) messenger RNA stability and uPA-dependent in vitro cell invasion. Cancer Res. 59:5286-5293.

    PubMed  Google Scholar 

  238. P. W. Tsai, S. G. Shiah, M. T. Lin, C. W. Wu, and M. L. Kuo (2003). Up-regulation of vascular endothelial growth factor C in breast cancer cells by heregulin-beta 1. A critical role of p38/nuclear factor-kappa B signaling pathway. J. Biol. Chem. 278:5750-5759.

    PubMed  Google Scholar 

  239. J. C. Boehm, Adams J. L. (2000). new inhibitors of p38 kinase. Expert Opin. Ther. Pat. 10:25-37.

    Google Scholar 

  240. J. C. Lee, S. Kumar, D. E. Griswold, D. C. Underwood, B. J. Votta, and J. L. Adams (2000). Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 47:185-201.

    PubMed  Google Scholar 

  241. M. S. Saporito, R. L. Hudkins, and A. C. Maroney (2002). Discovery of CEP-1347/KT-7515, an inhibitor of the JNK/SAPK pathway for the treatment of neurodegenerative diseases. Prog. Med. Chem. 40:23-62.

    PubMed  Google Scholar 

  242. Z. Han, D. L. Boyle, L. Chang, B. Bennett, M. Karin, L. Yang, A. M. Manning, and G. S. Firestein (2001). c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J. Clin. Invest. 108:73-81.

    PubMed  Google Scholar 

  243. B. L. Bennett, D. T. Sasaki, B. W. Murray, E. C. O'Leary, S. T. Sakata, W. Xu, J. C. Leisten, A. Motiwala, S. Pierce, Y. Satoh, S. S. Bhagwat, A. M. Manning, and D. W. Anderson (2001). SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc. Natl. Acad. Sci. U. S. A. 98:13681-13686.

    PubMed  Google Scholar 

  244. H. M. Abou-Issa, G. A. Alshafie, K. Seibert, A. T. Koki, J. L. Masferrer, and R. E. Harris (2001). Dose-response effects of the COX-2 inhibitor, celecoxib, on the chemoprevention of mammary carcinogenesis. Anticancer Res. 21:3425-3432.

    PubMed  Google Scholar 

  245. M. M. Moasser, A. Basso, S. D. Averbuch, and N. Rosen (2001). The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res. 61:7184-7188.

    PubMed  Google Scholar 

  246. J. Mendelsohn and J. Baselga (2000). The EGF receptor family as targets for cancer therapy. Oncogene 19:6550-6565.

    PubMed  Google Scholar 

  247. W. D. Klohs, D. W. Fry, and A. J. Kraker (1997). Inhibitors of tyrosine kinase. Curr. Opin. Oncol. 9:562-568.

    PubMed  Google Scholar 

  248. S. L. Moulder, F. M. Yakes, S. K. Muthuswamy, R. Bianco, J. F. Simpson, and C. L. Arteaga (2001). Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res. 61:8887-8895.

    PubMed  Google Scholar 

  249. K. C. Chan, W. F. Knox, J. M. Gee, J. Morris, R. I. Nicholson, C. S. Potten, and N. J. Bundred (2002). Effect of epidermal growth factor receptor tyrosine kinase inhibition on epithelial proliferation in normal and premalignant breast. Cancer Res. 62:122-128.

    PubMed  Google Scholar 

  250. J. F. R. Robertson, E. Gutteridge, K. L. Cheung, R. Owers, M. Koehler, and L. Hamilton (2002). A phase II study of ZD1839 (“Iressa”) in tamoxifen-resistant ER-positive and endocrine-insensitive (ER-negative) breast cancer. Breast Cancer Res. Treat. 76:S96.

    Google Scholar 

  251. K. Albain, R. Ellege, W. J. Gradishar, D. F. Hayes, E. Rowinsky, C. Hudis, L. Pusztai, D. Tripathy, S. Modi, and S. Rubi (2002). Open-label, phase II, multicenter trial of ZD1839 (“Iressa”) in patients with advanced breast cancer. Breast Cancer Res. Treat. 76:S33.

    Google Scholar 

  252. J. D. Moyer, E. G. Barbacci, K. K. Iwata, L. Arnold, B. Boman, A. Cunningham, C. DiOrio, J. Doty, M. J. Morin, M. P. Moyer, M. Neveu, V. A. Pollack, L. R. Pustilnik, M. M. Reynolds, D. Sloan, A. Theleman, and P. Miller (1997). Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res. 57:4838-4848.

    PubMed  Google Scholar 

  253. V. A. Pollack, D. M. Savage, D. A. Baker, K. E. Tsaparikos, D. E. Sloan, J. D. Moyer, E. G. Barbacci, L. R. Pustilnik, T. A. Smolarek, J. A. Davis, M. P. Vaidya, L. D. Arnold, J. L. Doty, K. K. Iwata, and M. J. Morin (1999). Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: Dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J. Pharmacol. Exp. Ther. 291:739-748.

    PubMed  Google Scholar 

  254. C. C. Solorzano, C. H. Baker, R. Tsan, P. Traxler, P. Cohen, E. Buchdunger, J. J. Killion, and I. J. Fidler (2001). Optimization for the blockade of epidermal growth factor receptor signaling for therapy of human pancreatic carcinoma. Clin. Cancer Res. 7:2563-2572.

    PubMed  Google Scholar 

  255. C. H. Baker, C. C. Solorzano, and I. J. Fidler (2002). Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer. Cancer Res. 62:1996-2003.

    PubMed  Google Scholar 

  256. R. Brandt, A. M. Wong, and N. E. Hynes (2001). Mammary glands reconstituted with Neu/ErbB2 transformed HC11 cells provide a novel orthotopic tumor model for testing anti-cancer agents. Oncogene 20:5459-5465.

    PubMed  Google Scholar 

  257. J. B. Smaill, H. D. Showalter, H. Zhou, A. J. Bridges, D. J. McNamara, D. W. Fry, J. M. Nelson, V. Sherwood, P. W. Vincent, B. J. Roberts, W. L. Elliott, and W. A. Denny (2001). Tyrosine kinase inhibitors. 18. 6-Substituted 4-anilinoquinazolines and 4-anilinopyrido[3,4-d]pyrimidines as soluble, irreversible inhibitors of the epidermal growth factor receptor. J. Med. Chem. 44:429-440.

    PubMed  Google Scholar 

  258. G. S. Rao, S. Murray, and S. P. Ethier (2000). Radiosensitization of human breast cancer cells by a novel ErbB family receptor tyrosine kinase inhibitor. Int. J. Radiat. Oncol. Biol. Phys. 48:1519-1528.

    PubMed  Google Scholar 

  259. D. W. Rusnak, K. Lackey, K. Affleck, E. R. Wood, K. J. Alligood, N. Rhodes, B. R. Keith, D. M. Murray, W. B. Knight, R. J. Mullin, and T. M. Gilmer (2001). The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol. Cancer Ther. 1:85-94.

    PubMed  Google Scholar 

  260. S. R. Johnston and L. R. Kelland (2001). Farnesyl transferase inhibitors–a novel therapy for breast cancer. Endocr. Relat. Cancer 8:227-235.

    PubMed  Google Scholar 

  261. S. N. Khleif, S. I. Abrams, J. M. Hamilton, E. Bergmann-Leitner, A. Chen, A. Bastian, S. Bernstein, Y. Chung, C. J. Allegra, and J. Schlom (1999). A phase I vaccine trial with peptides reflecting ras oncogene mutations of solid tumors. J. Immunother. 22:155-165.

    PubMed  Google Scholar 

  262. F. C. von Lintig, A. D. Dreilinger, N. M. Varki, A. M. Wallace, D. E. Casteel, and G. R. Boss (2000). Ras activation in human breast cancer. Breast Cancer Res. Treat. 62:51-62.

    PubMed  Google Scholar 

  263. S. Malaney and R. J. Daly (2001). The ras signaling pathway in mammary tumorigenesis and metastasis. J. Mam. Gland Biol. Neoplasia 6:101-113.

    Google Scholar 

  264. M. Asamoto, T. Ota, H. Toriyama-Baba, N. Hokaiwado, A. Naito, and H. Tsuda (2002). Mammary carcinomas induced in human c-Ha-ras proto-oncogene transgenic rats are estrogen-independent, but responsive to d-limonene treatment. Jpn. J. Cancer Res. 93:32-35.

    PubMed  Google Scholar 

  265. J. Hulit, D. Di Vizio, and R. G. Pestell (2001). Inducible transgenics. New lessons on events governing the induction and commitment in mammary tumorigenesis. Breast Cancer Res. 3:209-212.

    PubMed  Google Scholar 

  266. D. W. End, G. Smets, A. V. Todd, T. L. Applegate, C. J. Fuery, P. Angibaud, M. Venet, G. Sanz, H. Poignet, S. Skrzat, A. Devine, W. Wouters, and C. Bowden (2001). Characterization of the antitumor effects of the selective farnesyl protein transferase inhibitor R115777 in vivo and in vitro. Cancer Res. 61:131-137.

    PubMed  Google Scholar 

  267. L. R. Kelland, V. Smith, M. Valenti, L. Patterson, P. A. Clarke, S. Detre, D. End, A. J. Howes, M. Dowsett, P. Workman, and S. R. Johnston (2001). Preclinical antitumor activity and pharmacodynamic studies with the farnesyl protein transferase inhibitor R115777 in human breast cancer. Clin. Cancer Res. 7:3544-3550.

    PubMed  Google Scholar 

  268. T. Petit, E. Izbicka, R. A. Lawrence, W. R. Bishop, S. Weitman, and D. D. Von Hoff (1999). Activity of SCH 66336, a tricyclic farnesyltransferase inhibitor, against human tumor colony-forming units. Ann. Oncol. 10:449-453.

    PubMed  Google Scholar 

  269. W. C. Rose, F. Y. Lee, C. R. Fairchild, M. Lynch, T. Monticello, R. A. Kramer, and V. Manne (2001). Preclinical antitumor activity of BMS-214662, a highly apoptotic and novel farnesyltransferase inhibitor. Cancer Res. 61:7507-7517.

    PubMed  Google Scholar 

  270. R. Kurzrock, J. Cortes, and H. Kantarjian (2002). Clinical development of farnesyltransferase inhibitors in leukemias and myelodysplastic syndrome. Semin. Hematol. 39:20-24.

    PubMed  Google Scholar 

  271. C. A. Buser, C. J. Dinsmore, C. Fernandes, I. Greenberg, K. Hamilton, S. D. Mosser, E. S. Walsh, T. M. Williams, and K. S. Koblan (2001). High-performance liquid chromatography/mass spectrometry characterization of Ki4B-Ras in PSN-1 cells treated with the prenyltransferase inhibitor L-778,123. Anal. Biochem. 290:126-137.

    PubMed  Google Scholar 

  272. J. B. Gibbs, N. E. Kohl, K. S. Koblan, C. A. Omer, L. Sepp-Lorenzino, N. Rosen, N. J. Anthony, M. W. Conner, S. J. deSolms, T. M. Williams, S. L. Graham, G. D. Hartman, and A. Oliff (1996). Farnesyltransferase inhibitors and anti-Ras therapy. Breast Cancer Res. Treat. 38:75-83.

    PubMed  Google Scholar 

  273. C. R. Weinstein-Oppenheimer, C. Burrows, L. S. Steelman, and J. A. McCubrey (2002). The Effects of beta-Estradiol on Raf Activity, Cell Cycle Progression and Growth Factor Synthesis in the MCF-7 Breast Cancer Cell Line. Cancer Biol. Ther. 1:256-262.

    PubMed  Google Scholar 

  274. M. Maemura, Y. Iino, Y. Koibuchi, T. Yokoe, and Y. Morishita (1999). Mitogen-activated protein kinase cascade in breast cancer. Oncology 57(Suppl 2):37-44.

    PubMed  Google Scholar 

  275. F. McPhillips, P. Mullen, B. P. Monia, A. A. Ritchie, F. A. Dorr, J. F. Smyth, and S. P. Langdon (2001). Association of c-Raf expression with survival and its targeting with antisense oligonucleotides in ovarian cancer. Br. J. Cancer 85:1753-1758.

    PubMed  Google Scholar 

  276. P. J. O'Dwyer, J. P. Stevenson, M. Gallagher, A. Cassella, I. Vasilevskaya, B. P. Monia, J. Holmlund, F. A. Dorr, and K. S. Yao (1999). c-raf-1 depletion and tumor responses in patients treated with the c-raf-1 antisense oligodeoxynucleotide ISIS 5132 (CGP 69846A). Clin. Cancer Res. 5:3977-3982.

    PubMed  Google Scholar 

  277. L. Neckers (2002). Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol. Med. 8:S55-S61.

    PubMed  Google Scholar 

  278. T. W. Schulte, M. V. Blagosklonny, L. Romanova, J. F. Mushinski, B. P. Monia, J. F. Johnston, P. Nguyen, J. Trepel, and L. M. Neckers (1996). Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol. Cell. Biol. 16:5839-5845.

    PubMed  Google Scholar 

  279. T. W. Schulte, M. V. Blagosklonny, C. Ingui, and L. Neckers (1995). Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J. Biol. Chem. 270:24585-24588.

    PubMed  Google Scholar 

  280. W. Xu, M. Marcu, X. Yuan, E. Mimnaugh, C. Patterson, and L. Neckers (2002). Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc. Natl. Acad. Sci. U. S. A. 99:12847-12852.

    PubMed  Google Scholar 

  281. M. A. Krasilnikov (2000). Phosphatidylinositol-3 kinase dependent pathways: The role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc) 65:59-67.

    Google Scholar 

  282. R. Katso, K. Okkenhaug, K. Ahmadi, S. White, J. Timms, and M. D. Waterfield (2001). Cellular function of phosphoinositide 3-kinases: Implications for development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17:615-675.

    PubMed  Google Scholar 

  283. I. Vivanco and C. L. Sawyers (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2:489-501.

    PubMed  Google Scholar 

  284. P. Blume-Jensen and T. Hunter (2001). Oncogenic kinase signalling. Nature 411:355-365.

    PubMed  Google Scholar 

  285. S. R. Datta, A. Brunet, and M. E. Greenberg (1999). Cellular survival: A play in three Akts. Genes Dev. 13:2905-2927.

    PubMed  Google Scholar 

  286. J. Hutchinson, J. Jin, R. D. Cardiff, J. R. Woodgett, and W. J. Muller (2001). Activation of Akt (protein kinase B) in mammary epithelium provides a critical cell survival signal required for tumor progression. Mol. Cell. Biol. 21:2203-2212.

    PubMed  Google Scholar 

  287. G. J. Kops, N. D. de Ruiter, A. M. De Vries-Smits, D. R. Powell, J. L. Bos, and B. M. Burgering (1999). Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630-634.

    PubMed  Google Scholar 

  288. B. P. Zhou, Y. Liao, W. Xia, B. Spohn, M. H. Lee, and M. C. Hung (2001). Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat. Cell Biol. 3:245-252.

    PubMed  Google Scholar 

  289. R. H. Medema, G. J. Kops, J. L. Bos, and B. M. Burgering (2000). AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404:782-787.

    PubMed  Google Scholar 

  290. M. Sun, J. E. Paciga, R. I. Feldman, Z. Yuan, D. Coppola, Y. Y. Lu, S. A. Shelley, S. V. Nicosia, and J. Q. Cheng (2001). Phosphatidylinositol-3-OH Kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Res. 61:5985-5991.

    PubMed  Google Scholar 

  291. M. Sun, G. Wang, J. E. Paciga, R. I. Feldman, Z. Q. Yuan, X. L. Ma, S. A. Shelley, R. Jove, P. N. Tsichlis, S. V. Nicosia, and J. Q. Cheng (2001). AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am. J. Pathol. 159:431-437.

    PubMed  Google Scholar 

  292. L. Shayesteh, Y. Lu, W. L. Kuo, R. Baldocchi, T. Godfrey, C. Collins, D. Pinkel, B. Powell, G. B. Mills, and J. W. Gray (1999). PIK3CA is implicated as an oncogene in ovarian cancer. Nat. Genet. 21:99-102.

    PubMed  Google Scholar 

  293. A. J. Philp, I. G. Campbell, C. Leet, E. Vincan, S. P. Rockman, R. H. Whitehead, R. J. Thomas, and W. A. Phillips (2001). The phosphatidylinositol 3'-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res. 61:7426-7429.

    PubMed  Google Scholar 

  294. M. D. Ringel, N. Hayre, J. Saito, B. Saunier, F. Schuppert, H. Burch, V. Bernet, K. D. Burman, L. D. Kohn, and M. Saji (2001). Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res. 61:6105-6111.

    PubMed  Google Scholar 

  295. H. Cho, J. L. Thorvaldsen, Q. Chu, F. Feng, and M. J. Birnbaum (2001). Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J. Biol. Chem. 276:38349-38352.

    PubMed  Google Scholar 

  296. V. Stambolic, M. S. Tsao, D. Macpherson, A. Suzuki, W. B. Chapman, and T. W. Mak (2000). High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten+/-mice. Cancer Res. 60:3605-3611.

    PubMed  Google Scholar 

  297. K. L. Schwertfeger, M. M. Richert, and S. M. Anderson (2001). Mammary gland involution is delayed by activated Akt in transgenic mice. Mol. Endocrinol. 15:867-881.

    PubMed  Google Scholar 

  298. K. Moelling, K. Schad, M. Bosse, S. Zimmermann, and M. Schweneker (2002). Regulation of Raf-Akt Cross-talk. J. Biol. Chem. 277:31099-31106.

    PubMed  Google Scholar 

  299. S. G. Ward, C. H. June, and D. Olive (1996). PI 3-kinase: A pivotal pathway in T-cell activation? Immunol. Today 17:187-197.

    PubMed  Google Scholar 

  300. C. J. Vlahos, W. F. Matter, K. Y. Hui, and R. F. Brown (1994). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 269:5241-5248.

    PubMed  Google Scholar 

  301. A. V. Bakin, A. K. Tomlinson, N. A. Bhowmick, H. L. Moses, and C. L. Arteaga (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 275:36803-36810.

    PubMed  Google Scholar 

  302. M. P. Wymann, G. Bulgarelli-Leva, M. J. Zvelebil, L. Pirola, B. Vanhaesebroeck, M. D. Waterfield, and G. Panayotou (1996). Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol. Cell. Biol. 16:1722-1733.

    PubMed  Google Scholar 

  303. S. J. Mansour, J. M. Candia, K. K. Gloor, and N. G. Ahn (1996). Constitutively active mitogen-activated protein kinase kinase 1 (MAPKK1) and MAPKK2 mediate similar transcriptional and morphological responses. Cell Growth Differ. 7:243-250.

    PubMed  Google Scholar 

  304. J. C. Donovan, A. Milic, and J. M. Slingerland (2001). Constitutive MEK/MAPK activation leads to p27(Kip1) deregulation and antiestrogen resistance in human breast cancer cells. J. Biol. Chem. 276:40888-40895.

    PubMed  Google Scholar 

  305. J. Pinkas and P. Leder (2002). MEK1 signaling mediates transformation and metastasis of EpH4 mammary epithelial cells independent of an epithelial to mesenchymal transition. Cancer Res. 62:4781-4790.

    PubMed  Google Scholar 

  306. M. F. Favata, K. Y. Horiuchi, E. J. Manos, A. J. Daulerio, D. A. Stradley, W. S. Feeser, D. E. Van Dyk, W. J. Pitts, R. A. Earl, F. Hobbs, R. A. Copeland, R. L. Magolda, P. A. Scherle, and J. M. Trzaskos (1998). Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273:18623-18632.

    PubMed  Google Scholar 

  307. E. K. Lobenhofer, G. Huper, J. D. Iglehart, and J. R. Marks (2000). Inhibition of mitogen-activated protein kinase and phosphatidylinositol 3-kinase activity in MCF-7 cells prevents estrogen-induced mitogenesis. Cell Growth Differ. 11:99-110.

    PubMed  Google Scholar 

  308. Y. Hu, W. H. Dragowska, A. Wallis, V. Duronio, and L. Mayer (2001). Cytotoxicity induced by manipulation of signal transduction pathways is associated with down-regulation of Bcl-2 but not Mcl-1 in MCF-7 human breast cancer. Breast Cancer Res. Treat. 70:11-20.

    PubMed  Google Scholar 

  309. H. Fukazawa, K. Noguchi, Y. Murakami, and Y. Uehara (2002). Mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitors restore anoikis sensitivity in human breast cancer cell lines with a constitutively activated extracellular-regulated kinase (ERK) pathway. Mol. Cancer Ther. 1:303-309.

    PubMed  Google Scholar 

  310. M. S. Squires, P. M. Nixon, and S. J. Cook (2002). Cell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK) 1/2 but not ERK5/BMK1. Biochem. J. 366:673-680.

    PubMed  Google Scholar 

  311. S. P. Davies, H. Reddy, M. Caivano, and P. Cohen (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351:95-105.

    PubMed  Google Scholar 

  312. J. S. Sebolt-Leopold (2000). Development of anticancer drugs targeting the MAP kinase pathway. Oncogene 19:6594-6599.

    PubMed  Google Scholar 

  313. M. Milella, S. M. Kornblau, Z. Estrov, B. Z. Carter, H. Lapillonne, D. Harris, M. Konopleva, S. Zhao, E. Estey, and M. Andreeff (2001). Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J. Clin. Invest. 108:851-859.

    PubMed  Google Scholar 

  314. D. H. Williams, S. E. Wilkinson, T. Purton, A. Lamont, H. Flotow, and E. J. Murray (1998). Ro 09-2210 exhibits potent anti-proliferative effects on activated T cells by selectively blocking MKK activity. Biochemistry 37:9579-9585.

    PubMed  Google Scholar 

  315. J. M. Kyriakis (1999). Making the connection: Coupling of stress-activated ERK/MAPK (extracellular-signal-regulated kinase/mitogen-activated protein kinase) core signalling modules to extracellular stimuli and biological responses. Biochem. Soc. Symp. 64:29-48.

    PubMed  Google Scholar 

  316. K. Mishima, K. Inoue, and Y. Hayashi (2002). Overexpression of extracellular-signal regulated kinases on oral squamous cell carcinoma. Oral Oncol. 38:468-474.

    PubMed  Google Scholar 

  317. L. L. Licato and D. A. Brenner (1998). Analysis of signaling protein kinases in human colon or colorectal carcinomas. Dig. Dis. Sci. 43:1454-1464.

    PubMed  Google Scholar 

  318. R. Hoshino, Y. Chatani, T. Yamori, T. Tsuruo, H. Oka, O. Yoshida, Y. Shimada, S. Ari-i, H. Wada, J. Fujimoto, and M. Kohno (1999). Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene 18:813-822.

    PubMed  Google Scholar 

  319. R. J. Santen, R. X. Song, R. McPherson, R. Kumar, L. Adam, M. H. Jeng, and W. Yue (2002). The role of mitogen-activated protein (MAP) kinase in breast cancer. J. Steroid Biochem. Mol. Biol. 80:239-256.

    PubMed  Google Scholar 

  320. C. Xing and W. Imagawa (1999). Altered MAP kinase (ERK1,2) regulation in primary cultures of mammary tumor cells: Elevated basal activity and sustained response to EGF. Carcinogenesis 20:1201-1208.

    PubMed  Google Scholar 

  321. H. Enslen, D. M. Brancho, and R. J. Davis (2000). Molecular determinants that mediate selective activation of p38 MAP kinase isoforms. EMBO J. 19:1301-1311.

    PubMed  Google Scholar 

  322. C. C. Zhang and D. J. Shapiro (2000). Activation of the p38 mitogen-activated protein kinase pathway by estrogen or by 4-hydroxytamoxifen is coupled to estrogen receptor-induced apoptosis. J. Biol. Chem. 275:479-486.

    PubMed  Google Scholar 

  323. M. Hori, S. Inagawa, J. Shimazaki, and M. Itabashi (2000). Overexpression of mitogen-activated protein kinase superfamily proteins unrelated to Ras and AF-1 of estrogen receptor alpha mutation in advanced stage human breast cancer. Pathol. Res. Pract. 196:817-826.

    PubMed  Google Scholar 

  324. E. Cocolakis, S. Lemay, S. Ali, and J. J. Lebrun (2001). The p38 MAPK pathway is required for cell growth inhibition of human breast cancer cells in response to activin. J. Biol. Chem. 276:18430-18436.

    PubMed  Google Scholar 

  325. R. Seidman, I. Gitelman, O. Sagi, S. B. Horwitz, and M. Wolfson (2001). The role of ERK 1/2 and p38 MAP-kinase pathways in taxol-induced apoptosis in human ovarian carcinoma cells. Exp. Cell Res. 268:84-92.

    PubMed  Google Scholar 

  326. Z. Wang, B. J. Canagarajah, J. C. Boehm, S. Kassisa, M. H. Cobb, P. R. Young, S. Abdel-Meguid, J. L. Adams, and E. J. Goldsmith (1998). Structural basis of inhibitor selectivity in MAP kinases. Structure 6:1117-1128.

    PubMed  Google Scholar 

  327. J. C. Lee, S. Kassis, S. Kumar, A. Badger, and J. L. Adams (1999). p38 mitogen-activated protein kinase inhibitors--mechanisms and therapeutic potentials. Pharmacol. Ther. 82:389-397.

    PubMed  Google Scholar 

  328. J. J. Haddad (2001). VX-745. Vertex Pharmaceuticals. Curr. Opin. Investig. Drugs 2:1070-1076.

    PubMed  Google Scholar 

  329. T. Hideshima, M. Akiyama, T. Hayashi, P. Richardson, R. Schlossman, D. Chauhan, and K. C. Anderson (2003). Targeting p38 MAPK inhibits multiple myeloma cell growth in the bone marrow milieu. Blood 101:703-705.

    PubMed  Google Scholar 

  330. J. E. Stelmach, L. Liu, S. B. Patel, J. V. Pivnichny, G. Scapin, S. Singh, C. E. Hop, Z. Wang, J. R. Strauss, P. M. Cameron, E. A. Nichols, S. J. O'Keefe, E. A. O'Neill, D. M. Schmatz, C. D. Schwartz, C. M. Thompson, D. M. Zaller, and J. B. Doherty (2003). Design and synthesis of potent, orally bioavailable dihydroquinazolinone inhibitors of p38 MAP kinase. Bioorg. Med. Chem. Lett. 13:277-280.

    PubMed  Google Scholar 

  331. Y. M. Yang, F. Bost, W. Charbono, N. Dean, R. McKay, J. S. Rhim, C. Depatie, and D. Mercola (2003). C-Jun NH(2)-terminal kinase mediates proliferation and tumor growth of human prostate carcinoma. Clin. Cancer Res. 9:391-401.

    PubMed  Google Scholar 

  332. H. J. Kang, Y. Soh, M. S. Kim, E. J. Lee, Y. J. Surh, H. R. Kim, S. H. Kim, and A. Moon (2003). Roles of JNK-1 and p38 in selective induction of apoptosis by capsaicin in ras-transformed human breast epithelial cells. Int. J. Cancer 103:475-482.

    PubMed  Google Scholar 

  333. W. Yu, Q. Y. Liao, F. M. Hantash, B. G. Sanders, and K. Kline (2001). Activation of extracellular signal-regulated kinase and c-Jun-NH(2)-terminal kinase but not p38 mitogen-activated protein kinases is required for RRR-alpha-tocopheryl succinate-induced apoptosis of human breast cancer cells. Cancer Res. 61:6569-6576.

    PubMed  Google Scholar 

  334. A. C. Maroney, M. A. Glicksman, A. N. Basma, K. M. Walton, E. Knight Jr., C. A. Murphy, B. A. Bartlett, J. P. Finn, T. Angeles, Y. Matsuda, N. T. Neff, and C. A. Dionne (1998). Motoneuron apoptosis is blocked by CEP-1347 (KT 7515), a novel inhibitor of the JNK signaling pathway. J. Neurosci. 18:104-111.

    PubMed  Google Scholar 

  335. A. Bodner, A. C. Maroney, J. P. Finn, G. Ghadge, R. Roos, and R. J. Miller (2002). Mixed lineage kinase 3 mediates gp120IIIB-induced neurotoxicity. J. Neurochem. 82:1424-1434.

    PubMed  Google Scholar 

  336. C. A. Harris, M. Deshmukh, B. Tsui-Pierchala, A. C. Maroney, and E. M. JohnsonJr. (2002). Inhibition of the c-Jun N-terminal kinase signaling pathway by the mixed lineage kinase inhibitor CEP-1347 (KT7515) preserves metabolism and growth of trophic factor-deprived neurons. J. Neurosci. 22:103-113.

    PubMed  Google Scholar 

  337. Z. Xu, A. C. Maroney, P. Dobrzanski, N. V. Kukekov, and L. A. Greene (2001). The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis. Mol. Cell. Biol. 21:4713-4724.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Powel H. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Q., Brown, P.H. Novel Agents for the Prevention of Breast Cancer: Targeting Transcription Factors and Signal Transduction Pathways. J Mammary Gland Biol Neoplasia 8, 45–73 (2003). https://doi.org/10.1023/A:1025783221557

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025783221557

Navigation