Skip to main content
Log in

Structure and Assembly of the Yeast V-ATPase

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The yeast V-ATPase belongs to a family of V-type ATPases present in all eucaryotic organisms. In Saccharomyces cerevisiae the V-ATPase is localized to the membrane of the vacuole as well as the Golgi complex and endosomes. The V-ATPase brings about the acidification of these organelles by the transport of protons coupled to the hydrolysis of ATP. In yeast, the V-ATPase is composed of 13 subunits consisting of a catalytic V1 domain of peripherally associated proteins and a proton-translocating V0 domain of integral membrane proteins. The regulatory subunit, Vma13p, was the first V-ATPase subunit to have its crystal structure determined. In addition to proteins forming the functional V-ATPase complex, three ER-localized proteins facilitate the assembly of the V0 subunits following their translation and insertion into the membrane of the ER. Homologues of the Vma21p assembly factor have been identified in many higher eukaryotes supporting a ubiquitous assembly pathway for this important enzyme complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai, H., Terres, G., Pink, S., and Forgac, M. (1988). J. Biol. Chem. 263, 8796-8802.

    PubMed  Google Scholar 

  • Arata, Y., Baleja, J. D., and Forgac, M. (2002a). J. Biol. Chem. 277, 3357–3363.

    PubMed  Google Scholar 

  • Arata, Y., Baleja, J. D., and Forgac, M. (2002b). Biochemistry 41, 11301–11307.

    PubMed  Google Scholar 

  • Bauerle, C., Ho, M. N., Lindorfer, M. A., and Stevens, T. H. (1993). J. Biol. Chem. 268, 12749–12757.

    PubMed  Google Scholar 

  • Capaldi, R. A., and Aggeler, R. (2002). Trends Biochem. Sci. 27, 154–160.

    PubMed  Google Scholar 

  • Gibson, L. C., Cadwallader, G., and Finbow, M. E. (2002). Biochem. J. 366, 911–919.

    PubMed  Google Scholar 

  • Graham, L. A., Hill, K. H., and Stevens, T. H. (1994). J. Biol. Chem. 269, 25974–25977.

    PubMed  Google Scholar 

  • Graham, L. A., Hill, K. J., and Stevens, T. H. (1995). J. Biol. Chem. 270, 15037–15044.

    PubMed  Google Scholar 

  • Graham, L. A., Hill, K. J., and Stevens, T. H. (1998). J. Cell Biol. 142, 39–49.

    PubMed  Google Scholar 

  • Halachmi, D., and Eilam, Y. (1993). FEBS Lett. 316, 73–78.

    PubMed  Google Scholar 

  • Herrmann, J. M., Malkus, P., and Schekman, R. (1999). Trends Cell Biol. 9, 5–7.

    PubMed  Google Scholar 

  • Hill, K., and Cooper, A. A. (2000). EMBO J. 19, 550–561.

    PubMed  Google Scholar 

  • Hill, K. J., and Stevens, T. H. (1994). Mol. Biol. Cell 5, 1039–1050.

    PubMed  Google Scholar 

  • Hill, K. J., and Stevens, T. H. (1995). J. Biol. Chem. 270, 22329–22336.

    PubMed  Google Scholar 

  • Hirata, R., Graham, L. A., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1997). J. Biol. Chem. 272, 4795–4803.

    PubMed  Google Scholar 

  • Hirata, T., Iwamoto-Kihara, A., Sun-Wada, G. H., Okajima, T., Wada, Y., and Futai, M. (2003). J. Biol. Chem. 278, 23714–23719.

    PubMed  Google Scholar 

  • Hirata, R., Umemoto, N., Ho, M. N., Ohya, Y., Stevens, T. H., and Anraku, Y. (1993). J. Biol. Chem. 268, 961–967.

    PubMed  Google Scholar 

  • Ho, M. N., Hill, K. J., Lindorfer, M. A., and Stevens, T. H. (1993a). J. Biol. Chem. 268, 221–227.

    PubMed  Google Scholar 

  • Ho, M. N., Hirata, R., Umemoto, N., Ohya, Y., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1993b). J. Biol. Chem. 268, 18286–18292.

    PubMed  Google Scholar 

  • Jackson, D. D., and Stevens, T. H. (1997). J. Biol. Chem. 272, 25928–25934.

    PubMed  Google Scholar 

  • Kane, P. M., Yamashiro, C. T., and Stevens, T. H. (1989). J. Biol. Chem. 264, 19236–19244.

    PubMed  Google Scholar 

  • Kane, P. M., Yamashiro, C. T., Wolczyk, D. F., Neff, N., Goebl, M., and Stevens, T. H. (1990). Science 250, 651–657.

    PubMed  Google Scholar 

  • Kawasaki-Nishi, S., Bowers, K., Nishi, T., Forgac, M., and Stevens, T. H. (2001). J. Biol. Chem. 276, 47411–47420.

    Google Scholar 

  • Keenan Curtis, K., and Kane, P. M. (2002). J. Biol. Chem. 277, 2716–2724.

    PubMed  Google Scholar 

  • Kim, H., Melen, K., and Von Heijne, G. (2003). J. Biol. Chem. 278, 10208–10213.

    PubMed  Google Scholar 

  • Ludwig, J., Kerscher, S., Brandt, U., Pfeiffer, K., Getlawi, F., Apps, D. K., and Schägger, H. (1998). J. Biol. Chem. 273, 10939–10947.

    PubMed  Google Scholar 

  • Manolson, M. F., Proteau, D., Preston, R. A., Stenbit, A., Roberts, B. T., Hoyt, M. A., Preuss, D., Mulholland, J., Botstein, D., and Jones, E. W. (1992). J. Biol. Chem. 267, 14294–14303.

    PubMed  Google Scholar 

  • Manolson, M. F., Wu, B., Proteau, D., Taillon, B. E., Roberts, B. T., Hoyt, M. A., and Jones, E. W. (1994). J. Biol. Chem. 269, 14064–14074.

    PubMed  Google Scholar 

  • Mayer, A. (2002). Annu. Rev. Cell Dev. Biol. 18, 289–314.

    PubMed  Google Scholar 

  • Merzendorfer, H., Huss, M., Schmid, R., Harvey, W. R., and Wieczorek, H. (1999). J. Biol. Chem. 274, 17372–17378.

    PubMed  Google Scholar 

  • Nishi, T., and Forgac, M. (2002). Nat. Rev. Mol. Cell Biol. 3, 94–103.

    PubMed  Google Scholar 

  • Nishi, T., Kawasaki-Nishi, S., and Forgac, M. (2003). J. Biol. Chem. 278, 5821–5827.

    PubMed  Google Scholar 

  • Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997). Nature 386, 299–302.

    PubMed  Google Scholar 

  • Parra, K. J., Keenan, K. L., and Kane, P. M. (2000). J. Biol. Chem. 275, 21761–21767.

    PubMed  Google Scholar 

  • Peters, C., Bayer, M. J., Buhler, S., Andersen, J. S., Mann, M., and Mayer, A. (2001). Nature 409, 581–588.

    PubMed  Google Scholar 

  • Powell, B., Graham, L. A., and Stevens, T. H. (2000). J. Biol. Chem. 275, 23654–23660.

    PubMed  Google Scholar 

  • Pringle, J. R., Preston, R. A., Adams, A. E., Stearns, T., Drubin, D. G., Haarer, B. K., and Jones, E. W. (1989). Methods Cell Biol. 31, 357–435.

    PubMed  Google Scholar 

  • Sagermann, M., Stevens, T. H., and Matthews, B. W. (2001). Proc. Natl. Acad. Sci. U. S. A. 98, 7134–7139.

    PubMed  Google Scholar 

  • Stevens, T. H., and Forgac, M. (1997). Annu. Rev. Cell Dev. Biol. 13, 779–808.

    PubMed  Google Scholar 

  • Tomashek, J. J., Graham, L. A., Hutchins, M. U., Stevens, T. H., and Klionsky, D. J. (1997). J. Biol. Chem. 272, 26787–26793.

    PubMed  Google Scholar 

  • Tomashek, J. J., Sonnenburg, J. L., Artimovich, J. M., and Klionsky, D. J. (1996). J. Biol. Chem. 271, 10397–10404.

    PubMed  Google Scholar 

  • Vasilyeva, E., Liu, Q., MacLeod, K. J., Baleja, J. D., and Forgac, M. (2000). J. Biol. Chem. 275, 255–260.

    PubMed  Google Scholar 

  • Wickner, W. (2002). EMBO J. 21, 1241–1247.

    PubMed  Google Scholar 

  • Yamashiro, C. T., Kane, P. M., Wolczyk, D. F., Preston, R. A., and Stevens, T. H. (1990). Mol. Cell. Biol. 10, 3737–3749.

    PubMed  Google Scholar 

  • Zhang, J. W., Parra, K. J., Liu, J., and Kane, P. M. (1998). J. Biol. Chem. 273, 18470–18480.

    PubMed  Google Scholar 

  • Zhong, X., Malhotra, R., and Guidotti, G. (2000). J. Biol. Chem. 275, 35592–35599.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom H. Stevens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, L.A., Flannery, A.R. & Stevens, T.H. Structure and Assembly of the Yeast V-ATPase. J Bioenerg Biomembr 35, 301–312 (2003). https://doi.org/10.1023/A:1025772730586

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025772730586

Navigation