Skip to main content
Log in

Analysis of Two-Dimensional Optical Fields Using an Additional Shift

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

A solution to the phase problem in optics is considered within the context of registration and analysis of two-dimensional stationary optical fields transformed by the object under study or fields forming an image. To obtain information on amplitude and phase distributions of the light field analyzed, a method of registration of two intensity distributions is used. The first distribution corresponds directly to the amplitude distribution. The other is formed for the sum of the initial field and the field shifted along a certain direction. The intensity distributions obtained allow one to calculate the two-dimensional structure of the field under study. It is noteworthy that the method requires no iteration procedures in solving the problem. This leads to speeding up of the processing and analysis of the information. Two variants of optical schemes for the analysis of light fields are considered. The first one corresponds to registration of the image of the analyzed plane and the second to registration of the spectrum of the spatial frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Maksutov, Shadow Methods of Investigation of Optical Systems [in Russian], State Technical Press, Moscow (1934).

    Google Scholar 

  2. L. A. Vasiliev, Shadow Methods [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  3. G. D. Salamandra, Photographic Methods of Studying Fast Processes [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  4. R. W. Ditchburn, Light, Blackie, London (1963).

    Google Scholar 

  5. G. S. Lansberg, Optics [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  6. N. I. Kalitievsky, Wave Optics [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  7. S. A. Akhmanov and S. Yu. Nikitin, Physical Optics [in Russian], M. V. Lomonosov Moscow State University Press, Moscow (1998).

    Google Scholar 

  8. M. Born and E. Wolf, Principles of Optics, Pergamon Press, Oxford (1980).

    Google Scholar 

  9. V. P. Koronkevich, V. S. Sobolev, and Yu. N. Dubnischev, Laser Interferometry [in Russian], Nauka, Novosibirsk (1983).

    Google Scholar 

  10. V. P. Koronkevich and V. A. Khanov, Laser Interferometers and Their Applications [in Russian], Nauka, Novosibirsk (1984).

    Google Scholar 

  11. V. P. Koronkevich and V. A. Khanov, Contemporary Laser Interferometers [in Russian], Nauka, Novosibirsk (1985).

    Google Scholar 

  12. A. Ya. Karasik, B. S. Rinkevichius, and V. A. Zubov, Laser Interferometry Principles, CRC Press, Boca Raton–London (1995).

    Google Scholar 

  13. G. V. Stroke, An Introduction to Coherent Optics and Holography, Academic Press, New York (1966).

    Google Scholar 

  14. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography, Academic Press, New York (1971).

    Google Scholar 

  15. H. J. Caulfield, Handbook of Optical Holography, Academic Press, New York (1979).

    Google Scholar 

  16. Yu. I. Ostrovsky, M. M. Butusov, and G. V. Ostrovskaya, Interferometry by Holography, Springer-Verlag, Berlin (1980).

    Google Scholar 

  17. A. K. Beketova, A. F. Belozerov, A. M. Berezkin, et al., Holographic Interferometry of Phase Objects [in Russian], Nauka, Leningrad (1979).

    Google Scholar 

  18. W. Schumann and M. Dubas, Holographic Interferometry from the Scope of Deformation Analysis of Opaque Bodies, Springer-Verlag, Berlin (1979).

    Google Scholar 

  19. C. M. Vest, Holographic Interferometry, Wiley, New York (1979).

    Google Scholar 

  20. R. Jones and C. Wykes, Holographic and Speckle Interferometry, Cambridge University Press, Cambridge (1983).

    Google Scholar 

  21. M. Francon, La Granularite Laser (Specklee) et Ses Applications en Optique, Masson, Paris (1977).

    Google Scholar 

  22. N. A. Fomin, Speckle Interferometry of Gas Flows [in Russian], Nauka i Tekhnika, Minsk (1989).

    Google Scholar 

  23. M. Kharitonov, N. Shatokhina, W. Staude, at al., J. Russ. Laser Res., 20, 171 (1999).

    Google Scholar 

  24. N. Shatokhina, W. Staude, T. Sultanov, and V. Zubov, J. Russ. Laser Res., 20, 512 (1999).

    Google Scholar 

  25. H. A. Ferverda, “The problem of wave front phase reconstruction by amplitude distribution and coherence function,” in: H. P. Baltes (ed.), Inverse Source Problems in Optics, Springer, Berlin (1978).

    Google Scholar 

  26. T. I. Kuznetsova, Sov. Phys. – Uspekhi, 31, 364 (1988).

    Google Scholar 

  27. T. I. Kuznetsova, “Studies on Phase Problems in Optics,” in: Optics and Lasers (Proceeding of the P. N. Lebedev Physical Institute), Nova Science Publishers, New York (1996), Vol. 211, p. 62.

    Google Scholar 

  28. V. A. Zubov, Kvantovaya Élektron., 14, 1715 (1987).

    Google Scholar 

  29. T. V. Mironova, T. T. Sultanov, and V. A. Zubov, “Reconstruction of field phase structure with phase transparency,” Preprint No. 227 of the P. N. Lebedev Physical Institute, Moscow (1988).

    Google Scholar 

  30. V. A. Zubov, Sov. J. Quantum Electron., 20, 181 (1990).

    Google Scholar 

  31. V. A. Zubov, Sov. J. Quantum Electron., 26, 370 (1996).

    Google Scholar 

  32. A. A. Merkin and V. A. Zubov, J. Russ. Laser Res., 20, 317 (1999).

    Google Scholar 

  33. A. A. Merkin and V. A. Zubov, J. Russ. Laser Res., 21, 168 (2000).

    Google Scholar 

  34. V. A. Zubov, Sov. J. Quantum Electron., 32, 479 (2002).

    Google Scholar 

  35. A. A. Merkin, T. V. Mironova, and V. A. Zubov, J. Russ. Laser Res., 21, 228 (2000).

    Google Scholar 

  36. A. A. Merkin, T. V. Mironova, T. T. Sultanov, and V. A. Zubov, J. Russ. Laser Res., 21, 494 (2000).

    Google Scholar 

  37. A. A. Merkin, T. V. Mironova, T. T. Sultanov, and V. A. Zubov, J. Russ. Laser Res., 21, 575 (2000).

    Google Scholar 

  38. A. A. Merkin, T. V. Mironova, E. V. Zelepukina, and V. A. Zubov, J. Russ. Laser Res., 22, 306 (2001).

    Google Scholar 

  39. I. M. Nagibina, Interference and Diffraction. Theory and Applications [in Russian], Mashinostroenie, Leningrad (1974).

    Google Scholar 

  40. D. Malacara (ed.), Optical Shop Testing, Wiley, New York (1978).

    Google Scholar 

  41. V. A. Komissaruk, “Elements of applied theory of interferometers,” in: Optical Methods in Ballistic Experiments [in Russian], Nauka, Leningrad (1979).

    Google Scholar 

  42. V. N. Shekhtman, Opt. Mekh. Promysh., 10, 1 (1982).

    Google Scholar 

  43. V. N. Shekhtman, A. Yu. Rodionov, and A. G. Pelmenev, Opt. Spektrosk., 76, 988 (1994).

    Google Scholar 

  44. V. N. Shekhtman, A. Yu. Rodionov, and A. G. Pelmenev, Opt. Spektrosk., 79, 134 (1995).

    Google Scholar 

  45. A. Papoulis, Systems and Transforms with Applications in Optics, McGraw-Hill, New York (1968).

    Google Scholar 

  46. L. D. Landau and E. M. Lifshits, Field Theory [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  47. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  48. B. N. Begunov, Geometrical Optics [in Russian], M. V. Lomonosov Moscow State University Press, Moscow (1966).

    Google Scholar 

  49. M. D. Maltsev and G. A. Karakulina, Applied Optics and Optical Measurements [in Russian], Mashinostroenie, Moscow (1968).

    Google Scholar 

  50. M. I. Apenko and A. S. Dubovik, Applied Optics [in Russian], Nauka, Moscow (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkin, A.A., Mironova, T.V. & Zubov, V.A. Analysis of Two-Dimensional Optical Fields Using an Additional Shift. Journal of Russian Laser Research 24, 425–444 (2003). https://doi.org/10.1023/A:1025772125661

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025772125661

Navigation