Skip to main content
Log in

Sequential steps of carbohydrate signaling mediate sensory afferent differentiation

  • Published:
Journal of Neurocytology

Abstract

Differences in carbohydrate signaling control sequential steps in synaptic growth of sensory afferents in the leech. The relevant glycans are constitutive and developmentally regulated modifications of leechCAM and Tractin (family members of NCAM and L1) that are specific to the surface of sensory afferents. A mannosidic glycosylation mediates the dynamic growth of early afferents as they explore their target region through sprouting sensory arbors rich with synaptic vesicles. Later emerging galactosidic glycosylations serve as markers for subsets of the same sensory afferents that correlate with different sensory modalities. These developmentally regulated galactose markers now oppose the function of the constitutive mannose marker. Sensory afferents gain cell-cell contact with central neurons and self-similar afferents, but lose filopodia and synaptic vesicles. Extant vesicles are confined to sites of en passant synapse formation. The transformation of sensory afferent growth, progressing from mannose- to galactose-specific recognition, is consistent with a change from cell-matrix to cell-cell contact. While the constitutive mannosidic glycosylation promotes dynamic growth, developmentally regulated galactosidic glycosylations of the same cell adhesion molecules promote tissue stability. The persistence of both types of neutral glycans beyond embryonic age allows their function in synaptic plasticity during habituation and learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajt, M. L., Cole, R. N. & Zipser, B. (1990a) The specificity of the 130-kD leech sensory afferent proteins is encoded by their carbohydrate epitopes. Journal of Neurochemistry 55, 2117–2125.

    PubMed  Google Scholar 

  • Bajt, M. L., Schmitz, B., Schachner, M. & Zipser, B. (1990b) Carbohydrate epitopes involved in neural cell recognition are conserved between vertebrates and leech. Journal of Neuroscience Research 27, 276–285.

    PubMed  Google Scholar 

  • Baker, M., Tai-mh, Xu, Y., Johansen, K., Johansen, J. & Zipser, B. (2001) Synaptic growth: Shedding of CAMs with constitutive/developmentally regulated glycans. Society for Neuroscience Abstracts.

  • Boulis, N. M. & Sahley, C. L. (1988) A behavioral analysis of habituation and sensitization of shortening in the semi-intact leech. Journal of Neuroscience 8, 4621–4627.

    PubMed  Google Scholar 

  • Chen, Y. J., Wing, D. R., Guile, G. R., Dwek, R. A., Harvey, D. J. & Zamze, S. (1998) Neutral N-glycans in adult rat brain tissue—complete characterization reveals fucosylated hybrid and complex structures. European Journal of Biochemistry 251, 691–703.

    PubMed  Google Scholar 

  • Cole, R. N. & Zipser, B. (1994a) Carbohydrate-binding proteins in the leech: II. Lactose-binding protein, LL35, is located on neuronal and muscle subsets and all epithelial cells. Journal of Neurochemistry 63, 75–85.

    PubMed  Google Scholar 

  • Cole, R. N. & Zipser, B. (1994b) Isolation and Characterization of leech galactose-binding protein. I. Isolation and Characterization of Lactose-binding. Journal of Neurochemistry 63, 66–74.

    PubMed  Google Scholar 

  • Crocker, P. R. (2002) Siglecs: Sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling. Current Opinion of Structural Biology 12, 609–615.

    Article  Google Scholar 

  • Dodd, J. & Jessell, T. M. (1985) Lactoseries carbohydrates specify subsets of dorsal root ganglion neurons projecting to the superficial dorsal horn of rat spinal cord. Journal of Neuroscience 5, 3278–3294.

    PubMed  Google Scholar 

  • Fernandez, J. (1978) Structure of the leech nerve cord: Distribution of neurons and organization of fiber pathways. Journal of Comparative Neurology 180, 165–191.

    PubMed  Google Scholar 

  • Havet, J. (1899) Structure du systeme nerveux des annilides. La Cellule 17, 65–136.

    Google Scholar 

  • Hoffman, S. & Edelman, G. M. (1983) Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule. Proceedings of the National Academy of Sciences USA 80, 5762–5766.

    Google Scholar 

  • Huang, L., Hollingsworth, R., Husain, R. & Zipser, B. (2002) Separation and characterization of cell type-specific poly-β (1,4) linked mannopyranose from the leech species Hirudomedicinalis. Glycobiology 12, 679.

    Google Scholar 

  • Huang, Y., Jellies, J., Johansen, K. M. & Johansen, J. (1997) Differential glycosylation of tractin and leechCAM, two novel Ig Superfamily members, regulates neurite extension and fascicle formation. Journal of Cell Biology 138, 143–157.

    PubMed  Google Scholar 

  • Inoue, A. & Sanes, J. R. (1997) Lamina-specific connectivity in the brain: Regulation by N-Cadherin, neurotrophin and glycoconjugates. Science 276, 1428–1430.

    PubMed  Google Scholar 

  • Ioffe, E. & Stanley, P. (1994) Mice lacking Nactylglycosaminyltransferase I activity die at midgestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proceeding of the National Academy of Sciences USA 91, 272–232.

    Google Scholar 

  • Jie, C., Xu, Y., Wang, D., Lukin, D., Zipser, B., Jellies, J., Johansen, K. M. & Johansen, J. (2000) Post-translational processing and differential glycosylation of Tractin, an Ig-superfamily member involved in regulation of axonal outgrowth. Biochimica Biophysica Acta 1479, 1–14.

    Google Scholar 

  • Jie, C., Zipser, B., Jellies, J., Johansen, K. M. & Johansen, J. (1999) Differential glycosylation and proteolytic processing of LeechCAM in central and peripheral leech neurons. Biochimica Biophysica Acta 1452, 161–171.

    Article  Google Scholar 

  • Key, B. & Akeson, R. A. (1991) Delineation of olfactory pathways in the frog nervous system by unique glycoconjugates and N-CAM glycoforms. Neuron 6, 381–396.

    PubMed  Google Scholar 

  • Kraszewski, K., Mundig, O., Daniell, L., Verderio, C., Matteoli, M. & de Camilli, P. (1995) Synaptic vesicle dynamics in living cultured hippocampal neurons visualized with Cy3-conjugated antibodies directed against the luminal domain of synaptotagmin. Journal of Neuroscience 15, 4328–4342.

    PubMed  Google Scholar 

  • Landmesser, L., Dahm, L., Tang, J. & Rutishauser, U. (1990) Polysialic acid as a regulator of intramuscular nerve branching during embryonic development. Neuron 4, 655–667.

    PubMed  Google Scholar 

  • Lemmon, V., Farr, K. L. & Lagenaur, C. (1989) L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron 2, 1597–1603.

    PubMed  Google Scholar 

  • Matteoli, M., Takei, K., Perin, M. S., Suedhof, T. C. & de Camillo, P. (1992) Exo-endocytotic recycling of synaptic vesicles in developing processes of cultured hippocampal neurons. Journal of Cell Biology 117, 849–861.

    PubMed  Google Scholar 

  • Mayford, M., Barzilai, A., Keller, F., Schacher, S. & Kandel, E. R. (1992) Modulation of NCAM-related adhesion molecule with long-term synaptic plasticity in Aplysia. Science 256, 638–644.

    PubMed  Google Scholar 

  • McKay, R. D. G., Hockfield, S., Johansen, I., Thompson, I. & Frederiksen, K. (1983) Surface molecules identify groups of growing axons. Science 222, 678–684.

    Google Scholar 

  • Pays, L. & Schwarting, G. (2000) Gal-NCAM is a differentially expressed marker for mature sensory neurons in the rat olfactory system. Journal of Neurobiology 43, 173–185.

    PubMed  Google Scholar 

  • Peinado, A., Macagno, E. R. & Zipser, B. (1987) A group of related surface glycoproteins distinguish sets and subsets of sensory afferents in the leech nervous system. Brain Research 410, 335–339.

    PubMed  Google Scholar 

  • Regan, L. J., Dodd, J., Barondes, S. H. & Jessell, T. M. (1986) Selective expression of endogenous lactosebinding lectins and lactoseries glycoconjugates in subsets of rat sensory neurons. Proceedings of the National Academy of Sciences USA 83, 2248–2252.

    Google Scholar 

  • Rutishauser, U., Acheson, A., Hall, A. K., Mann, D. M. & Sunshine, J. (1988) The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science 2, 53–57.

    Google Scholar 

  • Shur, B. D., Evans, S. & Lu, Q. (1998) Cell surface galactosyltransferase: Current issues. Glycoconjugate Journal 15, 537–548.

    PubMed  Google Scholar 

  • Song, J. & Zipser, B. (1995a) Kinetics of the inhibition of axonal defasciculation mediated by carbohydrate markers in the embryonic Leech. Developmental Biology 168, 319–331.

    PubMed  Google Scholar 

  • Song, J. & Zipser, B. (1995b) Targeting of neuronal subsets mediated by their sequentially expressed carbohydrate markers. Neuron 14, 537–547.

    PubMed  Google Scholar 

  • Stanley, P. (1994) Glycosylation mutants of animal cells. Annual Review of Genetics 18, 525–552.

    Article  Google Scholar 

  • Stanley, P. & Ioffe, E. (1995) Glycosyltransferase mutants: Key to new insights in glycobiology. FASEB Journal 9, 1436–1444.

    PubMed  Google Scholar 

  • Steinberg, M. S. (1996) Adhesion in development:Anhistorical overview. Developmental Biology 180, 377–388.

    PubMed  Google Scholar 

  • Steinberg, M. S. & Takeichi, M. (1994) Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proceeding of the National Academy of Sciences USA 91, 206–209.

    Google Scholar 

  • Tai, M.-H., Rheuben, M., Autio, D. & Zipser, B. (1996) Leech photoreceptors project their galectincontaining processes into optic neuropils where they contact AP cells. Journal of Comparative Neurology 371, 235–248.

    PubMed  Google Scholar 

  • Tai, M.-H. & Zipser, B. (1998) Mannose-specific recognition mediates two aspects of synaptic growth in leech sensory afferents: Collateral branching and formation of synaptic vesicle clusters. Developmental Biology 201, 154–166.

    PubMed  Google Scholar 

  • Tai, M.-H. & Zipser, B. (1999) Sequential steps in synaptic targeting of leech sensory afferents are mediated by constitutive and developmentally regulated glycosylations of CAMs. Developmental Biology 214, 258–276.

    PubMed  Google Scholar 

  • Tenne-Brown, J., Puche, A. C. & Key, B. (1998) Expression of galectin-1 in the mouse olfactory system. International Journal of Developmental Biology 42, 791–799.

    PubMed  Google Scholar 

  • Vansteenhouse, H., Horton, Z., Goodman, M., O'Hagan, R., Tai-MH & Zipser, B. (2002) Cell type-specific glycosylations in C elegans. Society for Neuroscience Abstracts.

  • Whitlock, K. E. (1993) Development of Drosophila wing sensory neurons in mutants with missing of modified cell surface molecules. Development 117, 1251–1260.

    PubMed  Google Scholar 

  • Xu, Y. Z., Ji, Y., Zipser, B., Jellies, J., Johansen, K. M. & Johansen, J. (2002) Proteolytic cleavage of the ectodomain of the L1 CAM-family member tractin. Journal of Biological Chemistry 278, 4322–4330.

    PubMed  Google Scholar 

  • Yu, T. & Bargmann, C. (2001) Dynamic regulation of axon guidance. Nature Neuroscience 4, 1169–1179.

    Article  Google Scholar 

  • Zakharenko, S., Chang, S., O'Donoghue, M. & Popov, S. V. (1999) Neurotransmitter secretion along growing nerve processes: Comparison with synaptic vesicle exocytosis. Journal of Cell Biology 144, 507–518.

    PubMed  Google Scholar 

  • Zipser, B. & Cole, R. N. (1991) Amannose-specific recognition mediates the defasciculation of axons in the leech CNS. Journal of Neuroscience 11, 3471–3480.

    PubMed  Google Scholar 

  • Zipser, B. & McKay, R. D. G. (1981) Monoclonal antibodies distinguish identifiable neurons in the leech. Nature 289, 549–554.

    PubMed  Google Scholar 

  • Zipser, B., Morell, R. & Bajt, M. L. (1989) Defasciculation as a neuronal pathfinding strategy: Involvement of a specific glycoprotein. Neuron 3, 621–630.

    PubMed  Google Scholar 

  • Zipser, K., Erhardt, M., Song, J., Cole, R. N. & Zipser, B. (1994) Distribution of carbohydrate epitopes among disjoint subsets of leech sensory afferent neurons. Journal of Neuroscience 14, 4481–4493.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tai, MH., Zipser, B. Sequential steps of carbohydrate signaling mediate sensory afferent differentiation. J Neurocytol 31, 743–754 (2002). https://doi.org/10.1023/A:1025756015281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025756015281

Keywords

Navigation