Skip to main content
Log in

Further studies on cortical tangential migration in wild type and Pax-6 mutant mice

  • Published:
Journal of Neurocytology

Abstract

In this study we present new data concerning the tangential migration from the medial and lateral ganglionic eminences (MGE and LGE) to the cerebral cortex during development. We have used Calbindin as a useful marker to follow the itinerary of tangential migratory cells during early developmental stages in wild-type and Pax-6 homozygous mutant mice. In the wild-type mice, at early developmental stages, migrating cells advance through the intermediate zone (IZ) and preplate (PP). At more advanced stages, migrating cells were present in the subplate (SP) and cortical plate (CP) to reach the entire developing cerebral cortex. We found that, in the homozygous mutant mice (Pax-6 Sey-Neu/Pax-6 Sey-Neu), this tangential migration is severely affected at early developmental stages: migrating cells were absent in the IZ, which were only found some days later, suggesting that in the mutant mice, there is a temporal delay in tangential migration. We have also defined some possible mechanisms to explain certain migratory routes from the basal telencephalon to the cerebral cortex. We describe the existence of two factors, which we consider to be essential for the normal migration; the first one is the cell adhesion molecule PSA-NCAM, whose role in other migratory systems is well known. The second factor is Robo-2, whose expression delimits a channel for the passage of migratory cells from the basal telencephalon to the cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. R. (1997a) Interneuron migration from the basal forebrain to neocortex: Dependence on Dlx genes. Science 278, 474–476.

    PubMed  Google Scholar 

  • Anderson, S. A., Qiu, M. S., Bulfone, A., Eisensta, D. D., Meneses, J., Pedersen, R. & Rubenstein, J. L. R. (1997b) Mutation of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late-born striatal neurons. Neuron 19, 27–37.

    PubMed  Google Scholar 

  • Anderson, S. A., Mione, M., Yun, K. & Rubenstein, J. L. R. (1999) Differential origins of neocortical projection and local circuit neurons: Role of Dlx genes in neocortical interneurogenesis. Cerebral Cortex 9, 646–654.

    PubMed  Google Scholar 

  • Bonfani, L. & Theodosis, D. T. (1994) Expression of polysialylated neural cell adhesion molecule by proliferating cells in the subependymal layer of the adult rat, in its rostral extension and in the olfactory bulb. Neuroscience 62, 291–305.

    PubMed  Google Scholar 

  • Boulder Committee (1970) The embryonic vertebrate central nervous system: Revisited terminology. Anatomical Record 166, 257–261.

    Google Scholar 

  • Brose, K., Bland, K. S., Wang, K. H., Arnott, D., Henzel, W., Goodman, C. S., Tessierlavigne, M. & Kidd, T. (1999) Slit proteins bind Robo receptors and have an evolutionary conserved role in repulsive axon guidance. Cell 96, 795–806.

    PubMed  Google Scholar 

  • Brose, K. & Tessier-Lavigne, M. (2000) Slit proteins: Key regulators of axon guidance, axonal branching, and cell migration. Current Opinion in Neurobiology 10, 95–102.

    PubMed  Google Scholar 

  • Cajal, S. R. (1892) La rétine des vertébrés. La Cellule 9, 121–133.

    Google Scholar 

  • Chapouton, P., GÄrtner, A. & GÖtz, M. (1999) The role of Pax 6 in restricting cell migration between developing cortex and basal ganglia. Development 126, 5569–5579.

    PubMed  Google Scholar 

  • Chazal, G., Durbec, P., Jankovski, A., Rougon, G. & Cremer, H. (2000) Consequences of neural cell adhesion molecule deficiency on cell migration in rostral migratory stream of the mouse. Journal of Neuroscience 20, 1446–1457.

    PubMed  Google Scholar 

  • ChÉdotal, A., del Rio, J. A., RuÍz, M., He, Z., Borrel, V., de Castro, F., Ezan, F., Goodman, C. S., Tessier-Lavigne, M., Sotelo, C. & Soriano, E. (1998) Semaphorins III and IV repel hippocampal axons via two distinct receptors. Development 125, 4313–4323.

    PubMed  Google Scholar 

  • Chisholm, A. & Tessier-Lavigne, M. (1999) Conservation and divergence of axon guidance mechanisms. Current Opinion in Neurobiology 9, 603–615.

    PubMed  Google Scholar 

  • Cremer, H., Lange, R., Christoph, A., Plomann, M., Vopper, G., Roes, J., Brown, R., Baldwin, S., Kraemer, P. & Scheff, S. (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367, 455–459.

    PubMed  Google Scholar 

  • de Carlos, J. A. & O'Leary, D. D. M. (1992) Growth and targeting of subplate axons and establishment of major cortical pathways. Journal of Neuroscience 12, 1194–1211.

    PubMed  Google Scholar 

  • de Carlos, J. A., LÓpez-Mascaraque, L. & Valverde, F. (1996) Dynamics of cell migration from the lateral ganglionic eminence. Journal of Neuroscience 16, 6146–6156.

    PubMed  Google Scholar 

  • Denaxa, M., Chan, C.-H., Schachner, M., Parnavelas, J. & Karagogeos, D. (2001) The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber syste. Development 128, 4635–4644.

    PubMed  Google Scholar 

  • Harris, W. A & Holt, C. E. (1999) Slit, the midline repellent. Nature 398, 462–463.

    PubMed  Google Scholar 

  • Hu, H. (1999) Chemorepulsion of neuronal migration by slit-2 in the developing mammalian forebrain. Neuron 23, 703–711.

    PubMed  Google Scholar 

  • Hu, H., Tomasiewicz, H., Magnuson, T. & Rutishauser, U. (1996) The role of polysialic acid in migration of olfactory bulb interneuron precursors in the subventricular zone. Neuron 16, 735–743.

    PubMed  Google Scholar 

  • Jankovski, A. & Sotelo, C. (1996) Subventricular zone-olfactory bulb migratory pathway in the adult mouse: Cellular composition and specificity as determined by heterochronic and heterotopic transplantation. Journal of Comparative Neurology 371, 376–396.

    PubMed  Google Scholar 

  • JimÉnez, D., LÓpez-Mascaraque, L., Valverde, F. & de Carlos, J. A. (2002) Tangential migration in neocortical development. Developmental Biology 244, 155–169.

    PubMed  Google Scholar 

  • Lavdas, A. A., Grigoriou, M., Pachnis, V. & Parnavelas, J. G. (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. Journal of Neuroscience 19, 7881–7888.

    PubMed  Google Scholar 

  • LÓpez-Mascaraque, L., GarcÍa, M. C., Valverde, F. & de Carlos, J. A. (1998) Central olfactory structures in Pax-6 mutant mice. Annals of New York Academy of Sciences 855, 83–94.

    Google Scholar 

  • MarÍn-Padilla, M. (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felix domestica). A Golgi study. I. The primordial neocortical organization. Zeitschrift für Anatomie und Entwicklungsgesch 134, 117–145.

    Article  Google Scholar 

  • MarÍn, O. & Rubenstein, J. L. R. (2001) Along, remarkable journey: Tangential migration in the telencephalon. Nature Reviews Neuroscience 2, 1–11.

    Article  Google Scholar 

  • MarÍn, O., Yaron, A., Bagri, A., Tessierlavigne, M. & Rubenstein, J. L. R. (2001) Sorting of striatal and cortical interneurons regulated by semaphorin/neuropilin interactions. Science 293, 872–875.

    PubMed  Google Scholar 

  • Murakami, S., Seki, T., Rutishauser, U. & Arai, Y. (2000) Enzymatic removal of polysialic acid from neural cell adhesion molecule perturbs the migration of luteinizing hormone-releasing hormone neurons in the developing chick forebrain. Journal of Comparative Neurology 420, 171–181.

    PubMed  Google Scholar 

  • Nguyen-Ba-Charvet, K. T., Brose, K., Marillat, V., Kidd, T., Goodman, C. S., Tessierlavigne, M., Sotelo, C. & ChÉdotal, A. (1999) Slit2-mediated chemorepulsion and collapse of developing forebrain axons. Neuron 22, 463–473.

    PubMed  Google Scholar 

  • Nguyen-Ba-Charvet, K. T., Plump, A. S., Tessierlavigne, M. & ChÉdotal, A. (2002) Slit1 and Slit2 proteins control the development of the lateral olfactory system. Journal of Neuroscience 22, 5473–5480.

    PubMed  Google Scholar 

  • Ono, K., Tomasiewicz, H., Magnuson, T. & Rutishauser, U. (1994) N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13, 595–609.

    PubMed  Google Scholar 

  • Pleasure, S. J., Anderson, A., Hevner, R., Bagri, A., MarÍn, O., Lowenstein, D. H. & Rubenstein, J. R. (2000) Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons. Neuron 28, 471–476.

    Article  Google Scholar 

  • Rousselot, P., Lois, C. & Alvarez-Buylla, A. (1995) Embryonic (PSA) N-CAM reveals chains of migrating neuroblasts between the lateral ventricle and the olfactory bulb of adult mice. Journal of Comparative Neurology 351, 51–61.

    PubMed  Google Scholar 

  • Rutishauser, U., Acheson, A., Hall, A. K., Mann, D. M. & Sunshine, J. (1988) The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions. Science 240, 53–57.

    PubMed  Google Scholar 

  • Stewart, G. R. & Pearlman, A. L. (1987) Fibronectinlike immunoreactivity in the developing cerebral cortex. Journal of Neuroscience 7, 3325–3333.

    PubMed  Google Scholar 

  • Stoykova, A., Treichel, D., Hallonet, M. & Gruss, P. (2000) Pax6 modulates the dorsoventral patterning of the mammalian telencephalon. Journal of Neuroscience 20, 8042–8050.

    PubMed  Google Scholar 

  • Stoykova, A., GÖtz, M., Gruss, P. & Price, J. (1997) Pax-6 dependent regulation of adhesive patterning, Rcadherin expression and boundary formation in developing forebrain. Development 124, 3765–3777.

    PubMed  Google Scholar 

  • Sunshine, J., Balak, K., Rutishauser, U. & Jacobson, M. (1987) Changes in neural cell adhesion molecule(NCAM)structure during vertebrate neural development. Proceedings of the National Academy of Sciences, USA 84, 5986–5990.

    Google Scholar 

  • Sussel, L., MarÍn, O., Kimura, S. & Rubenstein, J. L. R. (1999) Loss of Nkz2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: Evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370.

    PubMed  Google Scholar 

  • Tamamaki, N., Fujimori, E. & Takauji, R. (1997) Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. Journal of Neuroscience 17, 8313–9323.

    PubMed  Google Scholar 

  • Tomasiewicz, H., Ono, K., Yee, D., Thompson, C., Goridis, C., Rutishauser, U. & Magnuson, T. (1993) Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the cerebral nervous system. Neuron 11, 1163–1174.

    PubMed  Google Scholar 

  • Wichterle, H., GarcÍa-Verdugo, J. M., Herrera, D. G. & Alvarez-Buylla, A. (1999) Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nature Neuroscience 2, 461–466.

    PubMed  Google Scholar 

  • Wu, W., Wong, K., Chen, J-.H., Dupuis, S., Wu, J. Y. & Rao, Y. (1999) Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400, 331–336.

    PubMed  Google Scholar 

  • Yoshida, K., Rutishauser, U., Crandall, J. E. & Schwating, G. A. (1999) Polysialic acid facilitates migration of luteinizing hormone-releasing hormone neurons on vomeronasal axons. Journal of Neuroscience 19, 794–801.

    PubMed  Google Scholar 

  • Yuan, S.-S., Zhou, L., Chen, J.-H., Wu, J. Y., Rao, Y. & Ornitz, D. M. (1999) The mouse SLIT family: Secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance. Developmental Biology 212, 290–306.

    PubMed  Google Scholar 

  • Yun, K., Potter, S. & Rubenstein, J. L. R. (2001) Gsh2 and Pax6 play complimentary roles in dorsoventral patterning of the mammalian telencephalon. Development 128, 193–205.

    PubMed  Google Scholar 

  • Zhu, Y., Li, H., Zhou, L., Wu, J. & Rao, J. (1999) Cellular and molecular guidance of GABAergic neuronal migration from an extracortical origin to the neocortex. Neuron 23, 473–485.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, D., López-Mascaraque, L., de Carlos, J.A. et al. Further studies on cortical tangential migration in wild type and Pax-6 mutant mice. J Neurocytol 31, 719–728 (2002). https://doi.org/10.1023/A:1025751914372

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025751914372

Keywords

Navigation