Skip to main content
Log in

Conformally Invariant Quantization at Order Three

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let (M, g) be a pseudo-Riemannian manifold and \(\mathcal{F}_{\lambda } (M)\) the space of densities of degree λ on M. Denote \(\mathcal{D}_{{\lambda ,}\mu }^k (M)\) the space of differential operators from \(\mathcal{F}_{\lambda } (M)\) to \(\mathcal{F}_\mu (M)\) of order k and S δ k with δ = μ − λ the corresponding space of symbols. We construct (the unique) conformally invariant quantization map \(Q_{{\lambda ,}\mu }^3 :S_\delta ^3 \to \mathcal{D}_{{\lambda ,}\mu }^3 \). This result generalizes that of Duval and Ovsienko.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argaval, G. S. and Wolf, E.: Calculus for functions of noncommuting operators and general phase space methods in quantum mechanics, I. Mapping theorems and ordering of functions on noncommuting operators, Phys. Rev. D 2(10) (1970), 2161–2188.

    Google Scholar 

  2. Besse, A. L.: Einstein Manifolds, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  3. Blattner, R. J.: Quantization and representation theory, In: Proc. Sympos. Pure Math. 26, Amer. Math. Soc., Providence, 1974, pp. 145–165.

    Google Scholar 

  4. Boniver, F. and Lecomte, P.: Aremark about the algebra of in nitesimal conformal transformations of the Euclidian space, Bull. London Math. Soc. 32(3) (2000), 263–266.

    Google Scholar 

  5. Bouarroudj, S. and Ovsienko, V.: Schwarzian derivative related to modules of differential operators on a locally projective manifold, Banach Center Publication, Inst. of Math. Warsaw, 2000.

  6. Bouarroudj, S. and Ovsienko, V.: Three cocycles on Diff(S1) generalizing the Schwarzian derivative, Internat. Math. Res. Notices 1 (1998), 25–39.

    Google Scholar 

  7. Brauer, R.: On algebras which are connected with the semisimple continuous groups, Ann. of Math. 38 (1937), 857.

    Google Scholar 

  8. Cohen, P., Manin, Yu. and Zagier, D.: Automorphic pseudodifferential operator, In: A. S. Fokas and I. M. Gelfan(eds), Algebraic Aspects of Integrable Systems, Progr. Non-linear Differential Equations Appl. 26, Birkha ¨user, Boston, 1997, pp. 17–47.

    Google Scholar 

  9. Duval, C. and Ovsienko, V.: Space of second order linear differential operators as a module over the lie algebra of vector fields, Adv. in Math. 132(2) (1997), 316–333.

    Google Scholar 

  10. Duval, C. and Ovsienko, V.: Conformally equivariant quantization, Math. Selecta.

  11. Duval, C., Lecomte, P. B. A. and Ovsienko, V.: Conformally equivariant quantization: Existence and uniqueness, Ann. Inst. Fourier 49(6) (1999), 1999–2029.

    Google Scholar 

  12. Fedosov, B.: Deformation Quantization and Index Theory, Akademie Verlag, Berlin, 1996.

    Google Scholar 

  13. Gargoubi, H.: —Sur la géométrie des opérateurs différentiels linéaires sur ℝ, Bull. Soc. Roy. Sci. Liège. 69(1) (2000), 21–47.

    Google Scholar 

  14. Gargoubi, H. and Ovsienko, V.: Space of linear differential operators on the real line as module over the lie algebra of vector fields, Int. Res. Math. Notes 5 (1996), 235–251.

    Google Scholar 

  15. Gonzalez-Lopez, A., Kamran, N. and Olver, P. J.: Lie algebras of vector fields in the real plane, Proc. London Math. Soc. 64 (1992), 339–368.

    Google Scholar 

  16. Kirillov, A. A.: Closed algebras of differential operators, Preprint, 1996.

  17. Kostant, B.: Symplectic Spinors in Symposia Math., Vol. 14, Academic Press, London, 1974.

    Google Scholar 

  18. Lecomte, P. B. A.: On the cohomologie of sl(m + 1, ℝ) acting on differential operators and sl(m + 1, ℝ)-equivariant symbol, Indag. Math. (NS) 11(1) (2003), 95–114.

    Google Scholar 

  19. Lecomte, P. B. A., Mathonet, P. and Tousset, E.: Comparison of some modules of the lie algebra of vector fields, Indag. Math. (NS) 7(4) (1996), 46–471.

    Google Scholar 

  20. Lecomte, P. B. A. and Ovsienko, V.: Projectively invariant symbol calculus, Lett. Math. Phys. 49(3) (1999), 173–196.

    Google Scholar 

  21. Loubon Djounga, S. E.: Module of third order differential operators on a conformally at manifold, J. Geom. Phys. 37 (2001), 251–261.

    Google Scholar 

  22. Peetre, J.: —Une caractérisation abstraite des opérateurs différentiels, Math. Scand. 7 (1959), 211–218; 8 (1960), 116–120.

    Google Scholar 

  23. Weyl, H.: The Classical Groups, Princeton Univ. Press, 1946.

  24. Wilczinski, E. J.: Projective Differential Geometry of Curves and Ruled Surfaces, Teubner, Leipzig, 1906.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djounga, S.E.L. Conformally Invariant Quantization at Order Three. Letters in Mathematical Physics 64, 203–212 (2003). https://doi.org/10.1023/A:1025751120672

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025751120672

Navigation