Skip to main content
Log in

Air-Coupled Transmission Coefficient Reconstruction Using a 3-D Complex-Transducer-Point Voltage Model

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Results are presented on the reconstruction of the transmission coefficient in air-coupled ultrasound experiments where the excitation is either a Gaussian sheet beam or a rotationally symmetric Gaussian beam. The effects of nonideal limitations in the method are also reported. The angular spectrum of the transmitted signal is obtained by performing a spatial Fourier transform on data acquired in a coordinate scan of the receiving transducer, an operation that yields, in the 2-D case, exactly the plane-wave transmission coefficient. This equality is shown using an analysis based on the complex transducer point technique. The transmission function reconstructed from a 3-D rotationally symmetric Gaussian beam differs only slightly, in isotropic media, from the plane-wave transmission coefficient. In addition, the influence of a finite coordinate scan and finite step size are also studied. As a demonstration, elastic constants of isotropic and anisotropic materials are obtained from reconstructed transmission functions by inverting the experimental data. The reconstructed results are compared with independent measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. D. E. Chimenti, Guided waves in plates and their use in materials characterization, Appl. Mech. Rev., 50, 247-284 (1997).

    Google Scholar 

  2. M. R. Karim and A. K. Mal, Inversion of leaky Lamb wave by simplex algorithm, J. Acoust. Soc. Am. 88, 482-491 (1990).

    Google Scholar 

  3. S. I. Rokhlin and D. E. Chimenti, Reconstruction of elastic constants from ultrasonic reflectivity data in a fluid coupled composite plate, Rev. Progr. Quant. NDE, Vol. 9, Eds. D. O. Thompson and D. E. Chimenti, (Plenum, New York, 1990), 1411-1418.

    Google Scholar 

  4. S. I. Rokhlin, C. Y. Wu, and L. Wang, Application of coupled ultrasonic plate modes for elastic constant reconstruction of anisotropic composite, Rev. Progr. Quant. NDE, Vol. 9, 1403-1411 (1990).

    Google Scholar 

  5. Y. Bar-Cohen and A. K. Mal, Characterization of composite laminate using combined LLW and PBS methods, Rev. Progr. Quant. NDE, Vol. 10, 1555-1560 (1991).

    Google Scholar 

  6. K. Suzukim, K. Huguchi and H. Tanigawa, A silicon electrostatic ultrasonic transducer, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 36, 620-627 (1989).

    Google Scholar 

  7. D. W. Schindel, D. A. Hutchins, L. Zhou and M. Sayer, The design and characterization of micromachined air-coupled capacitance transducers, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 42, 42-50 (1995).

    Google Scholar 

  8. D. W. Schindel and D. A. Hutchins, The capacitance transducer as a standard ultrasonic source in solids, J. Acoust. Soc. Am. 97, 1650-1659 (1995).

    Google Scholar 

  9. A. Safaeinili, D. E. Chimenti, and O. Lobkis, Air-coupled ultrasonic estimation of viscoelastic stiffnesses in plates, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 43, 1171-1180 (1996).

    Google Scholar 

  10. B. Hosten, D. A. Hutchins and D. W. Schindel, Measurement of elastic constants in composite material using air-coupled ultrasonic bulk waves, J. Acoust. Soc. Am. 99, 2116-2123 (1996).

    Google Scholar 

  11. W. M. D. Wright and D. A. Hutchins, Air-coupled ultrasonic testing of metals using broadband pulses in through-transmission, Ultrasonics 37, 19-22 (1999).

    Google Scholar 

  12. D. W. Schindel, Air-coupled ultrasonic measurements of adhesively bonded multi-layer structures, Ultrasonics 37, 185-200 (1999).

    Google Scholar 

  13. B. A. Auld, General electromechanical reciprocity relations applied to the calculation of elastic wave scattering coefficients, Wave Motion 1, 3-10 (1979).

    Google Scholar 

  14. G. S. Kino, The application of reciprocal theory to scattering of acoustic waves by flaws, J. Appl. Phys. 49, 3190-3199 (1978).

    Google Scholar 

  15. O. I. Lobkis, A. Safaeinili, and D. E. Chimenti, Precision ultrasonic reflection studies in fluid-coupled plates, J. Acoust. Soc. Am. 99, 2727-2736 (1996).

    Google Scholar 

  16. G. A. Deschamps, Gaussian beam as a bundle of complex rays, Electron. Lett. 7, 684-685 (1971).

    Google Scholar 

  17. D. E. Chimenti, J. Zhang, S. Zeroug and L. B. Felsen, Interaction of acoustic beams with fluid-loaded elastic structures, J. Acoust. Soc. Am. 95, 45-59 (1994).

    Google Scholar 

  18. T. J. Cloutier, A. Safaeinili, D. E. Chimenti, S. Zeroug, and L. B. Felsen, An experimental study of ultrasonic beam reflection from fluid-loaded cylindrical shells, Rev. Progr. Quant. NDE, Vol. 14, eds. D. O. Thompson and D. E. Chimenti, (Plenum, New York, 1995), pp. 131-138.

    Google Scholar 

  19. S. Zeroug and L. B. Felsen, Nonspecular reflection of two-and three-dimensional acoustic beams from fluid-immersed planelayered elastic structures, J. Acoust. Soc. Am. 95, 3075-3098 (1994).

    Google Scholar 

  20. S. Zeroug and L. B. Felsen, Nonspecular reflection of two-and three-dimensional acoustic beams from fluid-immersed cylindrically layered elastic structures, J. Acoust. Soc. Am. 98, 584-598 (1995).

    Google Scholar 

  21. S. Zeroug, F. E. Stanke, and R. Burridge, A complex-transducerpoint model for emitting and receiving ultrasonic transducers, Wave Motion 24, 21-40 (1996).

    Google Scholar 

  22. D. E. Chimenti and A. H. Nayfeh, Ultrasonic reflection and guided waves in fluid-coupled composite laminates, J. Nondestruct. Eval. 9, 51-69 (1990).

    Google Scholar 

  23. W. Sachse and Y.-H. Pao, On the determination of phase and group velocities of dispersive waves in solids, J. Appl. Phys. 49, 4320-4327 (1978).

    Google Scholar 

  24. D. Alleyne and P. Cawley, A two-dimensional Fourier transform method for the measurement of propagating multimode signals, J. Acoust. Soc. Am. 89, 1159-1168 (1991).

    Google Scholar 

  25. O. I. Lobkis and D. E. Chimenti, Three-dimensional transducer voltage in anisotropic materials characterization, J. Acoust. Soc. Am. 106, 35-45 (1999).

    Google Scholar 

  26. L. M. Brekhovskikh, Waves in Layered Media, (Academic, New York, 1960), Chap. 6.

    Google Scholar 

  27. Han Zhang, Ph.D. Thesis, Iowa State University, 1997.

  28. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, (Prentice Hall, Englewood Cliffs, 1973), Chap. 4.

    Google Scholar 

  29. Han Zhang, D. E. Chimenti, and S. Zeroug, Transducer misalignment effects on voltage amplitude in beam reflection from elastic structures, J. Acoust. Soc. Am. 104, 1982-1991 (1998).

    Google Scholar 

  30. M. Abramovits and I. A. Stegun, Handbook of Mathematical Functions, (Dover, New York, 1965), p. 298.

    Google Scholar 

  31. O. I. Lobkis, D. E. Chimenti, and Han Zhang, In-plane stiffness determination of composite materials, J. Acoust. Soc. Am. 107, 1852-1858 (2000).

    Google Scholar 

  32. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN, (Cambridge Univ. Press, London, 1995), Chap. 10.

    Google Scholar 

  33. R. Hooke and T. A. Jeeves, J. Assoc. Comp. Mach. 8(2), 219-229 (1961).

    Google Scholar 

  34. T. H. Hahn and W. Stephen, Introduction to Composite Materials, (Technomics Press, Lancaster, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Chimenti, D.E. Air-Coupled Transmission Coefficient Reconstruction Using a 3-D Complex-Transducer-Point Voltage Model. Journal of Nondestructive Evaluation 22, 23–37 (2003). https://doi.org/10.1023/A:1025728114677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025728114677

Navigation