Skip to main content
Log in

Anodic Dissolution of Palladium in Sulfuric Acid: An Electrochemical Quartz Crystal Microbalance Study

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Regularities of formation of a palladium oxide layer and its cathodic reduction in 0.5 M H2SO4 at 0.5–1.3 V (SHE) are studied by cyclic voltammetry, x-ray photoelectron spectroscopy, and electrochemical quartz crystal microbalance. A pure Pd plate and a ∼0.5-μm-thick Pd coating on gold-sputtered quartz crystal is used for electrochemical and microgravimetric studies. It is shown that a Pd electrode dissolves electrochemically in 0.5 M H2SO4 when its potential is cycled between 0.5 and 1.3 V. In the case of ∼0.5-μm-thick Pd coating on the gold substrate, the decrease in the electrode weight during one anodic–cathodic cycle is 1.0–1.5 μg/cm2. It is suggested that anodic process at 0.5–1.3 V (SHE) represents electrochemical oxidation of palladium, yielding a surface layer of poorly soluble Pd(OH)2 and/or PdO phases, as expressed by the equation Pd + 2H2O ⇄ (Pd(OH)2/PdO)s + 2H+ + 2e. This surface layer, (Pd(OH)2/PdO)s, undergoes reduction during the cathodic process. About 5% of the total amount of ionized palladium dissolve in electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conway, B.E., Prog. Surf. Sci., 1995, vol. 49, p. 331.

    Google Scholar 

  2. Angerstein-Kozlowska, H., Comprehensive Treaties of Electrochemistry, Yeager, E., Bockris, J.O'M., Conway, B.E., and Sarangapani, S., Eds., New York: Plenum, 1984, vol. 9, p. 22.

    Google Scholar 

  3. Bolzán, A.E., Chialvo, A.C., and Arvia, A.J., J. Electroanal. Chem., 1984, vol. 179, p. 71.

    Google Scholar 

  4. Perdriel, C.L., Custidiano, E., and Arvia, A.J., J. Electroanal. Chem., 1988, vol. 246, p. 65.

    Google Scholar 

  5. Burke, L.D. and Roche, M.B.C., J. Electroanal. Chem., 1985, vol. 186, p. 139.

    Google Scholar 

  6. Bolzán, A.E. and Arvia, A.J., J. Electroanal. Chem., 1992, vol. 322, p. 247.

    Google Scholar 

  7. Bolzán, A.E., J. Electroanal. Chem., 1995, vol. 380, p. 127.

    Google Scholar 

  8. Burke, L.D. and Casey, J.K., J. Electrochem. Soc., 1993, vol. 140, p. 1284.

    Google Scholar 

  9. Burke, L.D. and Casey, J.K., J. Electrochem. Soc., 1993, vol. 140, p. 1292.

    Google Scholar 

  10. Burke, L.D. and Casey, J.K., J. Appl. Electrochem., 1993, vol. 23, p. 573.

    Google Scholar 

  11. Burke, L.D. and Nagle, L.C., J. Electroanal. Chem., 1999, vol. 461, p. 52.

    Google Scholar 

  12. Dall'Antonia, L.H., Tremiliosi-Filho, G., and Jerkiewicz, G., J. Electroanal. Chem., 2001, vol. 502, p. 72.

  13. Jaksic, M.M., Johansen, B., and Tunold, T., Int. J. Hydrogen Energy, 1993, vol. 18, p. 111.

    Google Scholar 

  14. Birss, V.I., Chan, M., Phan, T., Vanýsek, P., and Zhang, A., J. Chem. Soc., Faraday Trans., 1996, vol. 92, p. 4041.

    Google Scholar 

  15. Kim, K.S., Gossman, A.F., and Winograd, N., Anal. Chem., 1974, vol. 46, p. 197.

    Google Scholar 

  16. Solomun, T., J. Electroanal. Chem., 1991, vol. 302, p. 31.

    Google Scholar 

  17. Pourbaix, M., Atlas d'Equilibres Electrochimiques, Paris: Gauthier-Villars, 1963.

    Google Scholar 

  18. Jusys, Z. and Stalnionis, G., J. Electroanal. Chem., 1997, vol. 431, p. 141.

    Google Scholar 

  19. Michri, A.A., Pshenichnikov, A.G., and Burshtein R.Kh., Elektrokhim., 1972, vol. 8, p. 364.

    Google Scholar 

  20. Juodkazis, K., Juodkazyt, G., Jasiulaitiené, V., Lukinskas, A., and ebeka, B., Electrochem. Commun., 2000, vol. 2, p. 503.

    Google Scholar 

  21. Juodkazis, K., Stalnionis, G., ebeka, B., Sukiene, V., and Savickaja, I., Elektrokhim., 2002, vol. 38, p. 1283.

    Google Scholar 

  22. Juodkazis, K., Juodkazyte, J., Šebeka, B., and Lukinskas, A., Electrochem. Commun., 1999, vol. 1, p. 315.

    Google Scholar 

  23. Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., et al., Handbook of X-Ray Photoelectron Spectroscopy, Minnesota 55344: Perkin-Elmer, 1978, p. 110.

    Google Scholar 

  24. Burke, L.D. and Roche, M.B.C., J. Electroanal. Chem., 1985, vol. 186, p. 139.

    Google Scholar 

  25. Burke, L.D. and Roche, M.B.C., J. Electroanal. Chem., 1984, vol. 167, p. 291.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juodkazis, K., Juodkazytė, J., Šebeka, B. et al. Anodic Dissolution of Palladium in Sulfuric Acid: An Electrochemical Quartz Crystal Microbalance Study. Russian Journal of Electrochemistry 39, 954–959 (2003). https://doi.org/10.1023/A:1025724021078

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025724021078

Navigation