Abstract
We present a study of the magnetic properties of a group of basalt samples from the Saldanha Massif (Mid-Atlantic Ridge – MAR – 36° 33′ 54′′ N, 33° 26′ W), and we set out to interpret these properties in the tectono-magmatic framework of this sector of the MAR. Most samples have low magnetic anisotropy and magnetic minerals of single domain grain size, typical of rapid cooling. The thermomagnetic study mostly shows two different susceptibility peaks. The high temperature peak is related to mineralogical alteration due to heating. The low temperature peak shows a distinction between three different stages of low temperature oxidation: the presence of titanomagnetite, titanomagnetite and titanomaghemite, and exclusively of titanomaghemite. Based on established empirical relationships between Curie temperature and degree of oxidation, the latter is tentatively deduced for all samples. Finally, swath bathymetry and sidescan sonar data combined with dive observations show that the Saldanha Massif is located over an exposed section of upper mantle rocks interpreted to be the result of detachment tectonics. Basalt samples inside the detachment zone often have higher than expected oxidation rates; this effect can be explained by the higher permeability caused by the detachment fault activity.
This is a preview of subscription content, access via your institution.
References
Akimoto, S., 1962, Magnetic properties of Fe-Fe2O3 system as a basis of rock magnetism, J. Phys. Soc. Jpn., suppl. B1 707–710.
Alt, J. C., Honnorez, J., Laverne, C. and Emmermann, R., 1986, Hydrothermal alteration of a 1-km section valley of the upper oceanic crust, Deep Sea drilling Project Hole 504B: Mineralogy, chemistry, and evolution of seawater-basalt interactions, J. Geophys. Res. 91, 10,309–10,335.
Barriga, F., Fouquet, Y., Almeida, A., Biscoito, M., Charlou, J. L., Costa, R., Dias, A., Marques, A., Miranda, J. M., Olu, K., Porteiro F., and Queiroz, M. G., 1999, Preliminary results of the Saldanha Cruise (FAMOUS segment of the MAR 36°30´ N), Geophys. Res. Abstr. 1, Eur. Geophys. Soc., Den Haag.
Bideau, D., Hekinian, R., Bolinger, C., Constantin, M., Gracia, E., Guivel, G., Sichler, B., Apprioual, R. and Le Gall, R., 1996, Submersible investigation of highly contrasted magmatic activities recorded on two segments of the Mid-Atlantic Ridge near 34°52? N and 33°55? N, Interridge News 5, 9–14.
Bina, M. M., 1990, Magnetic properties of basalts from ODP Hole 648B on the Mid-Atlantic Ridge near 23 °N, Proc. Ocean Drill Prog. Sci. Res. 106/109, 297–302.
Bina, M. M. and Prévot, M., 1989, Thermomagnetic investigations of titanomagnetite in submarine basalts: Evidence for differential maghemitization, Phys. Earth Planet. Int. 54, 169–179.
Blackman, D. K., Cann, J. R., Janssen, B. and Smith, D. K., 1998, Origin of extensional core complexes: Evidences from the Mid-Atlantic Ridge, Atlantis Fracture Zone, J. Geophys. Res. 103, 21315–21333.
Bleil, U. and Petersen, N., 1983, Variations in magnetization intensity and low-temperature titanomagnetite oxidation of ocean floor basalts, Nature 301, 384–388.
Bougault, H., German, C., Miranda, J. M. and Marflux /A T J. 1996, Mid-Atlantic Ridge: Hydrothermal fluxes at the Azores Triple Junction, Interridge News 5(2), 13–17.
Bougault, H., Aballéa, M., Radford-Knoery, J., Charlou, J. L., Jean Baptiste, P., Appriou, P., Needham, H. D., German, C. and Miranda, J. M., 1998, FAMOUS and AMAR segments on the Mid-Atlantic Ridge: ubiquitous hydrothermal Mn, CH4, δ3He signals along the rift through walls and rift offsets, Earth Planet. Sci. Lett. 161, 1–17.
Bonnati, E., 1976, Serpentinite intrusions in the oceanic crust, Earth and Planet. Sci. Lett. 32, 107–113.
Brown, K. and O'Reilly, W., 1988, The effect of low-temperature oxidation on the remanence of TRM-carrying titanomagnetite Fe2.4Ti0.6O4, Phys. Earth Planet. Int. 52, 108–116.
Cann, J. R., Blackman, D. K., Smith, D. K., McAllister, E., Janssen, B., Mello, S., Avegerinos, E., Pascoe, A. R. and Escartin, J., 1997, Corrugated slip surfaces formed at North Atlantic Ridge-transform intersections, Nature 385, 329–332.
Cannat, M., 1993, Emplacement of mantle rocks in the seafloor at the Mid-Atlantic ridge, J. Geophys. Res. 98, 4163–4172.
Cannat, M., Briais, A., Deplus, C., Escartín, J., Georgen, J., Lin, J., Mercouriev, S., Meyzen, C., Muller, M., Pouliquen, G., Rabain, A. and Silva, P. 1999, 'Mid-Atlantic Ridge-Azores hotspot interactions: along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 40 Ma ago', Earth Planet. Sci. Lett. 173, 257–269.
Canon-Tapia E., Walker G. P. L. and Herrero-Bervera E., 1995, Magnetic fabric and flow direction in basaltic Pahoehoe lava of Xitle Volcano, Mexico, J. Volcanol. Geotherm. Res. 65, 249–263.
Charlou J. L., Bougault, H., Donval, J. P., Pellé, H., Langmuir C. H. and C. F. S. Team. 1993, Seawater CH4 concentration over the Mid-Atlantic Ridge, from Hayes F. Z. to the Azores Triple Junction, EOS 74, 380.
Chevallier, R. and Pierre, J., 1932, Propriétés magnétiques des roches volcaniques, Ann. Phys. 18, 383–477.
Day, R., Fuller, M. and Schmidt, V. A., 1977, Hysteresis properties of titanomagnetites: Grain size and compositional dependence, Phys. Earth Planet. Inters. 13, 260–267.
DeMets, C., Gordon, R. G., Argus, D. F. and Stein, S., 1994, Effects of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geoph. Res. Lett. 21, 2191–2194.
Dick, H. J. B., Thompson, G. and Bryan, W. B., 1981, Low-angle faulting and steady-state emplacement of plutonic rocks at ridge transform intersections, Am. Geophys. Union Trans. EOS 62, 406.
Dunlop, D. J., 1981, The rock magnetism of fine particles, Phys. Earth Planet. Inter. 26, 1–26.
Dunlop, D. J., 1986a, Hysteresis properties of magnetite and their dependence on particle size: A test of pseudo-single-domain remanence models, J. Geophys. Res. 91, 9569–9584.
Dunlop, D. J., 1986b, Coercive force and coercivity spectra for submicron magnetites, Earth Planet. Sci. Lett. 78, 288–295.
Dunlop, D. J. and Ozdemir, O., 1997, Rock Magnetism: Fundamentals and frontiers, Cambridge University Press, 573 pp.
Fouquet, Y. and Scientific Party, 1997, Cruise report, FLORES cruise, AMORES project of the European MAST III programme Plouzané, IFREMER, DRO/GM.
Francis, T. J. G., 1981, Serpentinization faults and their role in the tectonics of slow-spreading ridges, J. Geophys. Res. 86, 11616–11622.
Gallagher, K. J., Feitknecht, W. and Mannweiler, U., 1968, Mechanism of oxidation of magnetite to ?-Fe2O3, Nature 217, 1118–1121.
German C. R., Parson, L. M. and the HEAT Scientific Team, 1996, Hydrothermal exploration at the Azores Triple Junction: Tectonic control of venting at slow spreading ridges? Earth. Planet. Sci. Lett. 138, 93–104.
German C., Richards K., Rudnicki M. D., Lam M. M., Charlou J. L. and the FLAME Scientific Party, 1998, Topographic control of a dispersing hydrothermal plume, Earth Planet. Sci. Lett. 156, 267–273.
Gracia, E., Charlou, J. L., Radford-Knoery, J. and Parson, L., 2000, Non-transform offsets along the Mid-Atlantic Ridge south of the Azores (38°-34° N): Ultramafic exposures and hosting of hydrothermal vents, Earth Planet. Sci. Lett. 177, 89–103.
Gracia, E., Bideau, D., Hekinian, R., Lagabrielle, Y., Parson, L. M., 1997, Along-axis magmatic oscillations and exposures of ultramafic rocks in a second-order segment of the Mid-Atlantic Ridge (33°43? N to 34°07? N), Geology 25(12), 1059–1062.
Goud, M. R., Karson, J. A., 1985, Tectonics of short-offset. Slow slipping transform zones in the FAMOUS area, Mid-Atlantic Ridge, Marine Geophys. Res. 7, 489–514.
Grommé, C. S., Wright, T. L. and Peck, D. L., 1979, Magnetic properties and oxidation of iron-titanium oxide minerals in Alae and Makaopuhi lava lakes, Hawaii, J. Geophys. Res. 74, 5277–5293.
Honnorez, J., Honnorez-Guerstein, B. M., Worm, H.-U. and Laverne, C., 1996, Correlation among the changes with alteration in mineralogical, chemical, and magnetic properties of upper ocean crust, Hole 896A, Proc. Ocean Drill. Prog. Sci. Res. 148, 171–190.
Horen, H. and Fleutelot, C., 1998, Highly magnetised and differentiated basalts at 18-19 S propagating spreading centre in the North Fiji Basin, Mar. Geophys. Res. 20, 129–137.
Irving, E., 1970, The Mid-Atlantic Ridge at 45 N, XVI. Oxidation and magnetic properties of basalts; review and discussion, Can. J. Earth Sci. 7, 1528–1538.
Jelinek V., 1977, The statistical theory of measuring anisotropy of magnetic susceptibility of rocks and its application, Brno, Geofyzika, 1-88.
Jelinek V., 1981, Characterization of the magnetic fabric of rocks, Tectonophysics 79, 63–67.
Johnson, H. P. and Hall, J. M., 1978, A detailed rock magnetic and opaque mineralogy study of the basalts from the Nazca plate, Geophys. J. R. Astr. Soc. 52, 45–64.
Johnson, H. P. and Pariso, J. E., 1993, Variations in oceanic crustal magnetization: Systematic changes in the last 160 million years, J. Geophys. Res. 98, 435–445.
Karson, J. A., 2000, Internal structure of oceanic lithosphere: A perspective from tectonic windows. In: Faulting and magmatism at Mid-Ocean Ridges. AGU Geophysical Monograph 106, 177–218.
Karson, J. A. and Dick, H. J. B., 1983, Tectonics of ridge-transform intersections at the Kane fracture zone, Mar. Geophys. Res. 6, 51–98.
Kent, D. V. and Gee, J., 1996, Magnetic alteration of zero-age oceanic basalt, Geology 24(8), 703–706.
Klinkhammer, G. P., Chin, C. S. and Wilson, C. 1992, Surveys of FARA section of the Mid-Atlantic Ridge for hydrothermal activity during FAZAR, EOS 74(16), 380.
Lagabrielle, Y., Bideau, D., Cannat, M., Karson, J.A. and Mével, C. 2000, Ultra-mafic plutonic rock suites exposed along the Mid-Atlantic Ridge (10 N-30 N). Symmetrical-assymetrical distribution and implications for the seafloor spreading processes. In: Faulting and magmatism at Mid-Ocean Ridges. AGU Geophys. Monogr. 106, 153–173.
Langmuir, C. H., Fornari, D., Colodner, D., Chalou, J. L., Costa, I., Desbruyères, D., Desonie, D., Emerson, T., Fiala-Medoni, A., Fouquet, Y., Humphris, S., Saldanha, L., Sours-Page, R., Thatcher, M., Tivey, M., Van Dover, C., Von Damm, K., Wiess, K. and Wilson, C., 1993, Geological setting and characteristics of the Lucky Strike vent field at 37°17? N on theMAR, EOS 74, 99.
Marshal, M. and Cox, A., 1972, Magnetic changes in pillow basalt due to sea floor weathering, J. Geophys. Res. 77, 6459–6469.
Needham, H. D., Voisset, M., Renard, V. and Bougault, H., 1992, Structural and Volcanic Features of the Mid-Atlantic Rift Zone Between 40° N and 33 N, EOS, Trans. AGU, Fall Meeting 552 (Abstract).
Nishitani, T. and Kono, M., 1983, Curie temperature and lattice constant of oxidized titanomagnetite, Geophys. J. R. Astr. Soc. 74, 585–600.
O'Reilly, W., 1984, Rock and Mineral Magnetism. Blackie, Glasgow and London & Chapman and Hall, New York, 220 pp.
Ozdemir, O. and O'Reilly, W., 1982, An experimental study of thermoremanent magnetization acquired by synthetic monodomain titanomaghemites, J. Geomag. Geoelec. 34, 467–478.
Ozdemir, O., 1987, Inversion of titanomaghemites, Phys. Earth Planet. Inter. 46, 184–196.
Ozima, M. and Larson, E. E., 1970, Low-and high-temperature oxidation of titanomagentite in relation to irreversible changes in the magnetic properties of submarine basalts, J. Geophys. Res. 75, 1003–1018.
Parson, L., Grácia, E., Coller, D., German, C. and Needham, D., 2000, Second-order segmentation: the relationship between volcanism and tectonism at the MAR, 38°N-35°40? N, Earth Planet. Sci. Lett. 178, 231–251.
Peterson, N., Eisenach, P. and Bleil, U., 1979, Low temperature alteration of the magnetic minerals in ocean floor basalts. Talwani, M., Harrison, C. G. A. and Hayes, D. E. (eds.) Deep Drilling Results in the Atlantic Ocean: Ocean Crust, Maurice Ewing Series., pp. 169–209, AGU, Washington, D.C., Vol. 2.
Readman, P. W. and O'Reilly, W., 1972, Magnetic properties of oxidized (cation-deficient) titanomagnetites, (Fe, Ti,?)O4, J. Geomag. Geoelec. 24, 69–90.
Shau, Y. H., Peacor, D. R. and Essene, E. J., 1993, Formation of Magnetic Single-Domain magnetite in Ocean Ridge basalts with implications for sea-floor magnetism, Science 261, 343–345.
Schmidbauer, E. and Readman, P. W., 1982, Low temperature magnetic properties of Ti-rich Fe-Ti spinels, J. Magn. Magn. Mater. 27, 114–118.
Smith, G. M. and Banerjee, S. K., 1986, Magnetic structure of the upper kilometer of the marine crust at Deep Sea Drilling Project Hole 504B, Eastern Pacific Ocean, J. Geophys. Res. 91(B10), 10337–10354.
Smith, B. M., 1987, Consequences of the maghemitization on the magnetic properties of submarine basalts: Synthesis of previous works and results concerning basement rocks from mainly DSDP legs 51 and 52, Phys. Earth Planet. Inter. 46, 206–226.
Smith-Daignières, B., 1984, Propriétés magnétiques de roches basaltiques provenant de la couche 2 de la croûteocéanique. Effets du degré de cristallisation et de l'altération a basse temperature. PhD thesis, University of Paris VI, France.
Tucker, P. and O'Reilly, W., 1980, The laboratory simulation of deuteric oxidation of titanomagnetites: Effect on magnetic properties and stability of thermoremanence, Phys. Earth Planet. Inter. 23, 112–133.
Tucholke, B. E., Lin, J. and Kleinrock, M. C., 1998, Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge, J. Geophys. Res. 103, 9857–9866.
Tucholke, B. E., Fujioka, K., Ishihara, T., Hirth, G. and Kinoshita, M., 2001, Submersible study of an oceanic megamullion in the Central North Atlantic, J. Geophys. Res. 106, 16145–16161.
Uyeda, S., 1958, Thermo-remanent magmetism as a medium of paleomagnetism, with special reference to reverse thermoremanent magnetism, Jpn. J. Geophys. 2, 1–23.
Xu, W., Peacor, D. R., Dollase, W. A., Van Der Voo, R. and Beaubouf, R., 1997a, Transformation of titanomagnetite to titanomaghemite: A slow, two-step, oxidation-ordering process in MORB, Am. Miner. 82, 1101–1110.
Xu, W., Van Der Voo, R., Peacor, D. R. and Beaubouf, R., 1997b, Alteration of fine-grained magnetite and its effects on the magnetization of the ocean floor, Earth Planet. Sci. Lett. 151, 279–288.
Zhou, W., Van Der Voo, R. and Peacor, D. R., 1997, Single-domain and superparamagnetic titanomagnetite with variable Ti content in young ocean-floor basalts: No evidence for rapid alteration, Earth Planet. Sci. Lett. 150, 353–362.
Zhou, W., Peacor, D. R., Van Der Voo, R. and Mansfield, J., 1999, Determination of lattice parameter, oxidation state, and composition of individual titanomagnetite/titanomaghemite grains by TEM, J. Geophys. Res. 104, 17689–17702.
Zhou,W., Van Der Voo, R., Peacor, D. R. and Zhang, Y., 2000, Variable Ti-content and grain size of titanomagnetite as a function of cooling rate in very young MORB, Earth Planet. Sci. Lett. 179, 9–20.
Zhou, W., Van Der Voo, R., Peacor, D. R., Wang, D. and Zhang, Y., 2001, Low-temperature oxidation in MORB of titanomagnetite to titanomaghemite: A gradual process with implications for marine magnetic anomaly amplitudes, J. Geophys. Res. 106(B4), 6409–6421.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Miranda, J., Silva, P., Lourenço, N. et al. Study of the Saldanha Massif (MAR, 36°34′ N): Constrains from rock magnetic and geophysical data. Marine Geophysical Researches 23, 299–318 (2002). https://doi.org/10.1023/A:1025711502122
Issue Date:
DOI: https://doi.org/10.1023/A:1025711502122
- detachment fault
- NTO tectonics
- rock magnetism