International Journal of Theoretical Physics

, Volume 42, Issue 6, pp 1281–1299 | Cite as

The Self-Induced Approach to Decoherence in Cosmology

  • Mario Castagnino
  • Olimpia Lombardi

Abstract

In this paper we will present the self-induced approach to decoherence, which does not require the interaction between the system and the environment: decoherence in closed quantum systems is possible. This fact has relevant consequences in cosmology, where the aim is to explain the emergence of classicality in the universe conceived as a closed (noninteracting) quantum system. In particular, we will show that the self-induced approach may be used for describing the evolution of a closed quantum universe, whose classical behavior arises as a result of decoherence.

decoherence cosmology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Antoniou, I., Suchanecki, Z., Laura, R., and Tasaki, S. (1997). Physica Status Solidi A: Applied Research 241, 737.Google Scholar
  2. Arbó, D., Castagnino, M., Gaioli, F., and Iguri, S. (2000). Physica Status Solidi A: Applied Research 277, 469. [quant-ph/0000541].Google Scholar
  3. Belanger, A. and Thomas, G. F. (1990). Canadian Journal of Mathematics 42, 410.Google Scholar
  4. Bohm, A. (1986). Quantum Mechanics, Foundations and Applications, Springer-Verlag, Berlin, Germany.Google Scholar
  5. Calzetta, E. A., Hu, B. L., and Mazzitelli, F. D. (2001). Physics Reports 352, 459.Google Scholar
  6. Castagnino, M. (1998). Physical Review D: Particles and Fields 57, 750.Google Scholar
  7. Castagnino, M., Gaioli, F., and Gunzig, E. (1996). Foundations Cos. Physics 16, 221.Google Scholar
  8. Castagnino, M., Gunzig, E., and Lombardo, F. (1995). General Relativity and Gravitation 27, 257.Google Scholar
  9. Castagnino, M. and Laura, R. (1997). Physical Review A 56, 108.Google Scholar
  10. Castagnino, M. and Laura, R. (2000a). International Journal of Theoretical Physics 39, 1737.Google Scholar
  11. Castagnino, M. and Laura, R. (2000b). Physical Review A 62, #022107.Google Scholar
  12. Castagnino, M. and Lombardo, F. (1996). General Relativity and Gravitation 28, 263.Google Scholar
  13. Castagnino, M. and Ordoñez, A. (manuscript submitted for publication). Journal of Physics A: Mathematical and General.Google Scholar
  14. Halliwell, J. and Zouppas, A. (1995). Physical Review D: Particles and Fields 52, 7294.Google Scholar
  15. Hartle, J. (1985). In High energy physics, 1985. Proceedings of the Yale Summer School, N. J. Bowik and F. Gursey, eds., World Scientific, Singapore.Google Scholar
  16. Hillary, M., O'Connell, R., Scaully, M., and Wigner, E. (1984). Physics Reports 106, 123.Google Scholar
  17. Iguri, S. and Castagnino, M. (1999). International Journal of Theoretical Physics 38, 143.Google Scholar
  18. Laura, R. and Castagnino, M. (1998a). Physical Review A 57, 4140.Google Scholar
  19. Laura, R. and Castagnino, M. (1998b). Physical Review E 57, 3948.Google Scholar
  20. Parravicini, G., Gorini, V. and Sudarshan, E. C. G. (1980). Journal of Mathematial Physics 21, 2208.Google Scholar
  21. Paz, J. P. and Sinha, S. (1991). Physical Review D: Particles and Fields 44, 1038.Google Scholar
  22. Paz, J. P. and Zurek, W. H. (2000). LANL. Preprint quant-ph/0010011.Google Scholar
  23. Polarky, D. and Starobinsky, A. A. (1996). Classical and Quantum Gravity 13, 377.Google Scholar
  24. Treves, A. (1967). Topological Vector Spaces, Distributions and Kernels, Academic Press, New York.Google Scholar
  25. van Hove, L. (1955). Physica 21, 901.Google Scholar
  26. Wigner, E. P. (1932). Physical Review 40, 749.Google Scholar
  27. Zeh, D. (1970). Foundations of Physics 1, 69.Google Scholar
  28. Zurek, W. H. (1991). Physics Today, 44, 36.Google Scholar
  29. Zurek, W. H. (1994). In Physical Origins of Time Asymmetry, J. J. Halliwell, J. Pérez-Mercader, and W. H. Zurek, eds., Cambridge University Press, Cambridge, UK.Google Scholar
  30. Zurek, W. H. (1998). LANL. Preprint quant-ph/9805065.Google Scholar
  31. Zurek, W. H. (2001). LANL. Preprint quant-ph/0105127.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Mario Castagnino
    • 1
  • Olimpia Lombardi
    • 2
  1. 1.CONICET — Instituto de Física de RosarioRosarioArgentina
  2. 2.CONICET — Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations