Skip to main content
Log in

Intercalation of Methylene Blue into Mordenites: Role of Zeolite Acidity

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The intercalation of methylene blue into mordenite zeolite was studied by diffuse reflectance spectroscopy. Methylene blue was incorporated into mordenite by ion exchange in the aqueous phase. Samples of sodium, calcium and protonated mordenite were subjected to methylene blue loading. The DR spectra observed shortly after mixing the dye with sodium mordenite are those of aggregated species adsorbed on the surface. The period of intercalation is very short (1 h) for protonated mordenite and is too long for calcium mordenite (7 days). The hydrated mordenite samples containing intercalated methylene blue show two 660 and 610 nm bands which are assigned to monomeric and dimeric species of methylene blue, respectively. Upon dehydration a new band at 745 nm is observed which corresponds to the protonated dye molecule. The intensity of this band increases with severity of dehydration. Those dehydrated samples containing merely aggregated dye molecules adsorbed on the surface do not show the 745 nm band. The protonation of methylene blue is reversible by the dehydration-hydration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Schulz-Ekloff, D. Wöhrle, B.V. Duffel and R.A. Schoonheydt: Micropor. Mesopor. Mater. 51, 91 (2002).

    Google Scholar 

  2. G. Calzaferri and N. Gfeller: J. Phys. Chem. 96, 3428 (1992).

    Google Scholar 

  3. R. Hoppe, G. Schulz-Ekloff, D. Wöhrle, E.S. Shpiro and O.P. Tkachenko: Zeolites 13, 322 (1993).

    Google Scholar 

  4. W. Hölderich, G. Lauth, G. Wagenblast and E. Schefcizk: Ger. Pat. DE 4207339 assigned to W. Hölderich, 1992.

  5. D. Wöhrle, A. Sobbi, O. Franke and G. Schulz-Ekloff: Zeolites 15, 540 (1995).

    Google Scholar 

  6. W. F. Hölderich, N. Rohrlich, P. Bartl and L. Chassot: Phys. Chem. Chem. Phys. 2, 3919 (2000).

    Google Scholar 

  7. D.E. DeVos and P.A. Jacobs: Stud. Surf. Sci. Catal. 137, 957 (2001).

    Google Scholar 

  8. D. Wöhrle and G. Schulz-Ekloff: Adv. Mater. 6, 875 (1994).

    Google Scholar 

  9. F. Bedioui: Coord. Chem. Rev. 144, 39 (1995).

    Google Scholar 

  10. M. Ehrl, H.W. Kindervater, F.W. Deeg and C. Bräuchle: J. Phys. Chem. 98, 11756 (1994).

    Google Scholar 

  11. S. Wohlrab, R. Hoppe, G. Schulz-Ekloff and D. Wöhrle: Zeolites 12, 862 (1992).

    Google Scholar 

  12. V. Ramamurthy, D.R. Sanderson and D.F. Eaton: J. Am. Chem. Soc. 115, 10438 (1993).

    Google Scholar 

  13. I. Braun, G. Schulz-Ekloff, M. Beckstette and D. Wöhrle: Zeolites 19, 128 (1997).

    Google Scholar 

  14. M. Ganschow, D. Wöhrle and G. Schulz-Ekloff: J. Porphyrins Phthalocyanine 3, 299 (1999).

    Google Scholar 

  15. M. Wark, M. Ganschow, Y. Rohlfing, G. Schulz-Ekloff and D. Wöhrle: Stud. Surf. Sci. Catal. 135, 160 (2001).

    Google Scholar 

  16. A. Ghanadzadeh and M.A. Zanjanchi: Spectrochimica Acta A 57, 1865 (2001).

    Google Scholar 

  17. B. Onida, B. Bonelli, M. Lucco-Borlera, L. Flora, C. Otero Areán and E. Garrone: Stud. Surf. Sci. Catal. 135, 364 (2001).

    Google Scholar 

  18. G.P. Handreck and T.D. Smith: J. Chem. Soc. Faraday Trans. 184, 4191 (1988).

    Google Scholar 

  19. J.R. Anderson, Y.F. Chang and A.E. Hughes: Catal. Lett. 2, 279 (1989).

    Google Scholar 

  20. M. Susic, N. Petranovic and B. Miocinovic: J. Inorg. Nucl. Chem. 34, 2349 (1972).

    Google Scholar 

  21. D.H. Park, K.W. Lee and S.J. Choe: Bull. Korean Chem. Soc. 16, 467 (1995).

    Google Scholar 

  22. Ch. Baerlocher, W.M. Meier and D.H. Olson: Atlas of Zeolite Framework Types, 5th Ed., Elsevier, 191 (2001).

  23. E. Rabinowithch and I.F. Epstein: J. Am. Chem. Soc. 63, 69 (1941).

    Google Scholar 

  24. A.A. Shaikh, P.N. Joshi, N.E. Jacob and V.P. Shiralkar: Zeolites 13, 511 (1993).

    Google Scholar 

  25. M.M.J. Treacy and J.B. Higgins: Collection of Simulated XRDPowder Patterns for Zeolites, 4th Ed., Elsevier, 243 (2001).

  26. R. Hoppe, G. Schulz-Ekloff, D. Wöhrle, M. Ehrl and C. Bräuchle: Stud. Surf. Sci. Catal. 69, 199 (1991).

    Google Scholar 

  27. K. Bergmann and C.T. O'konski: J. Phys. Chem. 67, 2169 (1963).

    Google Scholar 

  28. J. Cenens and K.A. Schoonheydt: Clays and Clay Minerals 36, 214 (1988).

    Google Scholar 

  29. D.W. Breck: Zeolites Molecular Sieves, Wiley-Interscience, 462 (1974).

  30. J.W. Ward: J. Phys. Chem. 72, 4211 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanjanchi, M., Sohrabnejad, S. Intercalation of Methylene Blue into Mordenites: Role of Zeolite Acidity. Journal of Inclusion Phenomena 46, 43–49 (2003). https://doi.org/10.1023/A:1025699425668

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025699425668

Navigation