Skip to main content
Log in

Effect of glass–ceramic microstructure on its in vitro bioactivity

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Two routes were used to obtain a glass–ceramic composed of 43.5 wt % SiO2 – 43.5 wt % CaO – 13 wt % ZrO2. Heat treatment of a glass monolith produced a glass–ceramic (WZ1) containing wollastonite-2M and tetragonal zirconia as crystalline phases. The WZ1 did not display bioactivity in vitro. Ceramizing the glass via powder technology routes formed a bioactive glass–ceramic (WZ2). The two glass–ceramics, WZ1 and WZ2, were composed of the same crystalline phases, but differed in microstructure. The in vitro studies carried out on WZ2 showed the formation of an apatite-like layer on its surface during exposure to a simulated body fluid. This paper examined the influence of both chemical and morphological factors on the in vitro bioactivitity. The interfacial reaction product was examined by scanning and transmission electron microscopy. Both instruments were fitted with energy-dispersive X-ray analyzers. Measurements of the pH made directly at the interface of the two glass–ceramics were important in understanding their different behavior during exposure to the same physiological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kokubo, S. Ito, M. Shigemata, S. Saskka and T. Yamamura, J. Mater. Sci. 22 (1987) 4067.

    Google Scholar 

  2. L. L. Hench, J. Am. Ceram. Soc. 81 (1998) 1705.

    Google Scholar 

  3. M. Jarcho, Clin. Orthop. Relat. Res. 157(6) (1981) 259.

    Google Scholar 

  4. D. F. Williams, in ‘Biocompatibility of Tissue Analogs’, edited by D. F. Williams (CRC Press, Boca Raton, FL, 1985) p. 43.

    Google Scholar 

  5. S. F. Hulbert, J. C. Bokros, L. L. Hench, J. Wilson and G. Heimke, in ‘Ceramics in Clinical Applications: Past, Present and Future in High Tech Ceramics’, edited by P. Vincenzini (Elsevier, Amsterdam, The Netherlands, 1987) p. 189.

    Google Scholar 

  6. R. Z. Legeros Adv. Dent. Res. 2 (1988) 164.

    Google Scholar 

  7. A. Merolli, P. Tranquilli Leaali and P. L. Guidi, J. Mater. Sci.: Mater. Med. 11 (2000) 219.

    Google Scholar 

  8. V. Perrone and A. Merolli, Nuove prospettive Terapia 2 (1993) 27.

    Google Scholar 

  9. A. Merolli, P. L. Guidi and P. Ranquilli Leali, It. I. Orthop. Traumatol. 22 (1996) 119.

    Google Scholar 

  10. E. Park, R. A. Condate Er and D. T. Hoelzel J. Mater. Sci.: Mater. Med. 9 (1998) 643.

    Google Scholar 

  11. C. A. Van Blitterswijk, S. C. Hesseling, J. J. Grote, H. K. Koerten, K. De Groot, J. Biomed. Mater. Res. 24 (1990) 433.

    Google Scholar 

  12. K. Ohura, T. Nakamura, T. Yamamuro, T. Kokubo, Y. Ebisaswa and M. Oka, ibid. 25 (1991) 357.

    Google Scholar 

  13. Z. B. Luklinska and W. Bonfield, in ‘Bone-Bonding Materials’, edited by P. Ducheyne, T. Kokubo and C. A. Van Blitterswijk (Reed Healtcare Communications, 1992) p. 73.

  14. P. N. De Aza, Z. B. Luklinska, A. Martinez, M. R. Anseau, F. Guitian and S. De Aza, J. Microsc-Oxforf. 197(1) (2000) 60.

    Google Scholar 

  15. P. N. De Aza, Z. B. Luklinska, M. R. Anseau, F. Guitian and S. De Aza, ibid. 201(1) (2001) 33.

    Google Scholar 

  16. M. Walker, Tesis Doctoral, Universidad de Florida, 1977.

  17. T. Kokubo, T. Hayashi, S. Sakka, T. Kitsugi and T. Yamamuro, Yogyo-Kyokai-hi. 95(8) (1987) 785.

    Google Scholar 

  18. T. Ebisawa, T. Kokubo, K. Ohura and T. Yamamuro, J. Mater. Sci.: Mater. Med. 1 (1990) 244.

    Google Scholar 

  19. C. Ohtsuki, T. Kokubo and T. Yamamuro, J. Non-Crystal. Solids 143 (1992) 84.

    Google Scholar 

  20. L. L. Hench and J. W. Wilson, Science 226 (1984) 630.

    Google Scholar 

  21. H. Ishizawa, M. Fujino and M. Ogino, in ‘Handbook of Bioactive Ceramics’, edited by T. Yamamuro, L. L. Hench and J. Wilson (CRC Press, Boca Raton, FL, 1990) p. 115.

    Google Scholar 

  22. C. Ohtsuki, Y. Aoki, T. Kokubo, Y. Bando, M. Neo, T. Yamamuro and T. Nakamura, Bioceramics 5 (1992) 79.

    Google Scholar 

  23. L. L. Hench, J. Am. Ceram. Soc. 74 (1991) 1487.

    Google Scholar 

  24. T. Kokubo, S. Ito, T. Huang, T. Hayashi, M. Shigemata, S. Saskka, T. Kitsugi and T. Yamamura, J. Biomed. Mater. Res 24 (1999) 331.

    Google Scholar 

  25. L. L. Hench, R. J. Splinter, T. K. Greenle and W. C. Allen, ibid. 2 (1971) 117.

    Google Scholar 

  26. W. Cao and L. L. Hench, Ceram Int. 22 (1996) 493.

    Google Scholar 

  27. T. Nonami and S. Tsutsumi, J. Mater. Sci.: Mater. Med. 10 (1999) 475.

    Google Scholar 

  28. H. M. Kim, F. Miyaji, T. Kokubo, C. Ohtsuki and T. Nakamura J. Am. Ceram. Soc. 78 (1995) 1769.

    Google Scholar 

  29. H. BrÖmel, K. Deutscher, B. Blenke, E. Pfeil and V. Struna Sci. Ceram. 9 (1977) 219.

    Google Scholar 

  30. T. Kokubo, S. Ito, S. Sakka and Y. Yamamuro, J. Mater. Sci. 21 (1986) 536.

    Google Scholar 

  31. J. J. Shyu and J. M. Wu, J. Am. Ceram. Soc. 73 (1990) 1062.

    Google Scholar 

  32. J. J. Shyu and J. M. Wu, J. Ma. Sci. 29 (1994) 3167.

    Google Scholar 

  33. T. Kitsugi, T. Yamamuro, T. Nakamura and T. Kokubo, J. Biomed. Mater. Res. 23 (1989) 631.

    Google Scholar 

  34. J. D. Santos, L. J. Jha, F. J. Monteiro, J. Mater. Sci.: Mater. Med. 7 (1996) 181.

    Google Scholar 

  35. P. N. De Aza, C. M. Lopez, F. Guitian and S. De Aza, J. Am. Ceram. Soc. 76(4) (1993) 1052.

    Google Scholar 

  36. P. N. De Aza, Z. B. Luklinska, M. R. Anseau, F. Guitian and S. De Aza, J. Microsc-Oxford 182 (1996) 24.

    Google Scholar 

  37. P. N. De Aza, F. Guitian, S. De Aza and F. J. Valle, The Analyst 123 (1998) 81.

    Google Scholar 

  38. J. Gamble, in ‘Chemical Anatomy, Physiology and Pathology of Extracellular Fluid’ (Harvard University Press, Cambridge, 1967)

    Google Scholar 

  39. P. N. De Aza, F. Guitian and S. De Aza, Scr. Metall. Mater. 31 (1994) 1001.

    Google Scholar 

  40. P. N. De Aza, F. Guitian and S. De Aza, in ‘Advances in Science and Technology, 12. Materials in Clinical Application’, edited by P. Vincenzini (Techna Srl., 1995) p. 19.

  41. P. N. De Aza, F. Guitian and S. De Aza, Biomaterials 18 (1997) 1285.

    Google Scholar 

  42. A. Merlos, I. Gracia, C. CanÉ, J. Esteve, J. Bartroli and C. Jimenez, in ‘Proceedings of the 5th Conference on Sensors and their Applications’ (Edinburgh, UK, 1991) p. 127.

  43. P. N. De Aza, F. Guitian, M. Merlos, E. Lora-Tamayo and S. De Aza, J. Mater. Sci.: Mater. Med. 7(7) (1996) 399.

    Google Scholar 

  44. R. A. Robinson, J. Bone Joint Surg. Am. 34 (1952) 389.

    Google Scholar 

  45. T. W. Spechman and W. P. Norris, Science (1957) 126.

  46. G. Daculsi, R. Z. Legeros, M. Heughebaert and I. Barbieux, Calcif. Tiss. Int. 46 (1990) 20.

    Google Scholar 

  47. G. Daculsi, R. Z. Legeros and C. Deudon, Scanning 4(2) (1990) 309.

    Google Scholar 

  48. G. Daculsi, R. Z. Legeros, J. P. Legeros and D. Mitre, J. Biomed. Mater. Res. App. Biomat. 2 (1991) 147.

    Google Scholar 

  49. M. Spector, J. Microsc-Oxford 103 (1975) 55.

    Google Scholar 

  50. B. Kerebel, G. Daculsi and A. Verbaere, J. Ultrastruc. Res. 57 (1976) 266.

    Google Scholar 

  51. S. Jackson, A. G. Cartwright and D. Lewis, Calcif. Tissue Res. 25 (1978) 217.

    Google Scholar 

  52. U. Gross and V. Strunz, J. Biomed. Mater. Res. 14 (1980) 607.

    Google Scholar 

  53. U. Gross and V. Strunz, in ‘Clinical Applications of Biomaterials’, edited by A. J. C. Lee, T. Albrektsson and P. Branemark (John Wiley & Son, New York, 1982) p. 237.

    Google Scholar 

  54. U. Gross, R. Kinne, H. J. Schmitz and V. Strunz, in ‘The Response of Bone to Surface Active Glass/Glass\3-Ceramics’ (CRC, Critical Reviews in Biocompatibility, 1988) p. 4.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Aza, P.N., Luklinska, Z.B. Effect of glass–ceramic microstructure on its in vitro bioactivity. Journal of Materials Science: Materials in Medicine 14, 891–898 (2003). https://doi.org/10.1023/A:1025686727291

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025686727291

Keywords

Navigation