Skip to main content
Log in

The Law of the Logarithm for Weighted Sums of Independent Random Variables

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let X,X n ;n≥1 be a sequence of real-valued i.i.d. random variables with E(X)=0. Assume B(u) is positive, strictly increasing and regularly-varying at infinity with index 1/2≤α<1. Set b n =B(n),n≥1. If

$$E(B^{ - 1} (\left| X \right|)) < \infty ,{\text{ }}B^{ - 1} (x\log x)P(\left| X \right| >x) = o(\log x){\text{ }}as{\text{ x}} \to \infty $$

and

$$\mathop {\lim }\limits_{x \to \infty } \sup \frac{{n\log nE(X^2 I_{\left\{ {X^2 < b_n^2 /(\log n)^2 } \right\}} )}}{{b_n^2 }} = \lambda ^2$$

for some λ∈[0,∞), then it is shown that

$$\mathop {\lim }\limits_{x \to \infty } \sup \frac{{\left| {\sum\nolimits_{k = 1}^n {a_{n,k} X_k } } \right|}}{{b_n }} \leqslant 6\sqrt 2 \lambda {\text{ }}\mathop {\sup }\limits_{1 \leqslant k \leqslant n,n \geqslant 1} {\text{ }}\left| {a_{n,k} } \right|{\text{ a}}{\text{.s}}{\text{.}}$$

and

$$\mathop {\lim }\limits_{x \to \infty } \sup {\text{ }}(\mathop {\lim \inf }\limits_{x \to \infty } )\frac{{\left| {\sum\nolimits_{k = 1}^n {W_{n,k} X_k } } \right|}}{{b_n }} = + \left( - \right)\sqrt 2 {\text{ }}\lambda \sigma (W){\text{ a}}{\text{.s}}{\text{.}}$$

for every real triangular array (a n,k ;1≤kn,n≥1) and every array of bounded real-valued i.i.d. random variables W,W n,k ;1≤kn,n≥1`` independent of {X,X n ;n≥1}, where σ(W)=(E(WE(W))2)1/2. An analogous law of the iterated logarithm for the unweighted sums ∑n k=1 X k ;n≥1} is also given, along with some illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez, S., and Bordes, L. (2002). Quantile process under progressive censoring. Rapport de Recherche No. 2002.03, Mathématiques Appliquées, Université Technologie de Compiègne, France.

    Google Scholar 

  2. Choi, B. D., and Sung, S. H. (1987). Almost sure convergence theorems of weighted sums of random variables. Stochastic Anal. Appl. 5, 365–377.

    Google Scholar 

  3. Chow, Y. S., and Teicher, H. (1978). Probability Theory: Independence, Interchangeability, Martingales, Springer-Verlag, New York.

    Google Scholar 

  4. Cuzick, J. (1995). A strong law for weighted sums of i.i.d. random variables. J. Theoret. Probab. 8, 625–641.

    Google Scholar 

  5. Cuzick, J. (2001). Erratum "A strong law for weighted sums of i.i.d. random variables." J. Theoret. Probab. 14, 605.

    Google Scholar 

  6. Li, D. L. (1996). Bounded and compact laws of the logarithm for B-valued random variables. Stochastic Process. Appl. 63, 189–209.

    Google Scholar 

  7. Li, D. L., Rao, M. B., Jiang, T. F., and Wang, X. C. (1995). Complete convergence and almost sure convergence of weighted sums of random variables. J. Theoret. Probab. 8, 49–76.

    Google Scholar 

  8. Li, D. L., Rao, M. B., and Wang, X. C. (1990). On the strong law of large numbers and the law of the logarithm for weighted sums of independent random variables with multidimensional indices. Research Report No. 90–43, Center for Multivariate Analysis, Pennsylvania State University, University Park, Pennsyvania 16802.

    Google Scholar 

  9. Li, D. L., Rao, M. B., and Wang, X. C. (1995). On the strong law of large numbers and the law of the logarithm for weighted sums of independent random variables with multidimensional indices. J. Multivariate Anal. 52, 181–198.

    Google Scholar 

  10. Petrov, V. V. (1995). Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Clarendon Press, Oxford.

    Google Scholar 

  11. Tomkins, R. J. (1974). On the law of the iterated logarithm for double sequences of random variables. Z. Wahrsch. Verw. Gebiete 30, 303–314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Tomkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Tomkins, R.J. The Law of the Logarithm for Weighted Sums of Independent Random Variables. Journal of Theoretical Probability 16, 519–542 (2003). https://doi.org/10.1023/A:1025684513749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025684513749

Navigation