Skip to main content
Log in

How are Emerging Flux, Flares and CMEs Related to Magnetic Polarity Imbalance in Midi Data?

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In order to understand whether major flares or coronal mass ejections (CMEs) can be related to changes in the longitudinal photospheric magnetic field, we study 4 young active regions during seven days of their disk passage. This time period precludes any biases which may be introduced in studies that look at the field evolution during the short-term flare or CME period only. Data from the Michelson Doppler Imager (MDI) with a time cadence of 96 min are used. Corrections are made to the data to account for area foreshortening and angle between line of sight and field direction, and also the underestimation of the flux densities. We make a systematic study of the evolution of the longitudinal magnetic field, and analyze flare and CME occurrence in the magnetic evolution. We find that the majority of CMEs and flares occur during or after new flux emergence. The flux in all four active regions is observed to have deviations from polarity balance both on the long term (solar rotation) and on the short term (few hours). The long-term imbalance is not due to linkage outside the active region; it is primarily related to the east–west distance from central meridian, with the sign of polarity closer to the limb dominating. The sequence of short-term imbalances are not closely linked to CMEs and flares and no permanent imbalance remains after them. We propose that both kinds of imbalance are due to the presence of a horizontal field component (parallel to the photospheric surface) in the emerging flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amari, T., Luciani, J. F., Aly, J. J., and Tagger, M.: 1996, Astron. Astrophys. 306, 913.

    Google Scholar 

  • Ambastha, A., Hagyard, M. J., and West, E. A.: 1993, Solar Phys. 148, 277.

    Google Scholar 

  • Antiochos, S. K., Devore, C. R., and Klimchuk, J. A.: 1999, Astrophys. J. 510, 485.

    Google Scholar 

  • Aulanier, G. and Démoulin, P.: 1998, Astron. Astrophys. 329, 1125.

    Google Scholar 

  • Berger, T. and Lites, B. W.: 2003, Solar Phys., 213, 213.

    Google Scholar 

  • Bommier, V., Landi Degl'Innocenti, E., Leroy J.-L., and Sahal-Bréchot, S.: 1994, Solar Phys. 154, 231.

    Google Scholar 

  • Bumba, V. and Howard R.: 1965, Astrophys. J. 141, 1492.

    Google Scholar 

  • Brueckner, G. E., Howard, R. A., Koomen, M. J. et al.: 1995, Solar Phys. 162, 357.

    Google Scholar 

  • Chen, J., Wang, H., Zirin, H., and Ai, G.: 1994, Solar Phys. 154, 261.

    Google Scholar 

  • Choudhary, D. P., Venkatakrishnan, P., and Gosain, S.: 2002, Astrophys. J. 573, 851.

    Google Scholar 

  • Delaboudinière, J.-P., Artzner, G. E., Brunaud, J. et al.: 1995, Solar Phys. 162, 291.

    Google Scholar 

  • Delannée, C., Delaboudiniére, J.-P., and Lamy, P.: 2000, Astron. Astrophys. 355, 725.

    Google Scholar 

  • Démoulin, P., Mandrini, C. H., van Driel-Gesztelyi, L. et al.: 2002, Astron. Astrophys. 382, 650.

    Google Scholar 

  • Dryer, M., Andrews, M. D., Aurass, H. et al.: 1998, Solar Phys. 181, 159.

    Google Scholar 

  • Feynman, J. and Martin, S. F.: 1995, J. Geophys. Res. 100, 3355.

    Google Scholar 

  • Gaizauskas, V., Mandrini, C. H., Démoulin, P., Luoni, M. L., and Rovira, M. G.: 1998, Astron. Astrophys. 332, 353.

    Google Scholar 

  • Gary, G. A. and Démoulin, P.: 1995, Astrophys. J. 445, 982.

    Google Scholar 

  • Giggerich, O., Noyes, R. W., Kalkofen, W., and Cuny, Y.: 1971, Solar Phys. 18, 347.

    Google Scholar 

  • Green, L.M., Matthews, S. A., van Driel-Gesztelyi, L., Harra, L. K., and Culhane, L. J.: 2002a, Solar Phys. 205, 325.

    Google Scholar 

  • Green, L. M., López Fuentes, M. C., Mandrini, C. H., Démoulin, P., van Driel-Gesztelyi, L., and Culhane, J. L.: 2002b, Solar Phys. 208, 43.

    Google Scholar 

  • Hagyard, M. J., Stark, B. A., and Venkatakrishnan, P.: 1999, Solar Phys. 184, 133.

    Google Scholar 

  • Hagyard, M. J., Smith, J. B. Jr., Teuber, D., and West, E. A.: 1984, Solar Phys. 91, 115.

    Google Scholar 

  • Harvey, K. L. and Harvey, J. W.: 1976, Solar Phys. 47, 233.

    Google Scholar 

  • Howard, R. F.: 1991, Solar Phys. 134, 233.

    Google Scholar 

  • Isenberg, P. A., Forbes, T. G., and Démoulin, P.: 1993, Astrophys. J. 417, 368.

    Google Scholar 

  • Klimchuk, J. A., Canfield, R. C., and Rhoads, J. E.: 1992, Astrophys. J. 385, 327.

    Google Scholar 

  • Lara, A., Gopalswamy, N., and DeForest, C.: 2000, J. Geophys. Res. 27, 1435.

    Google Scholar 

  • Li, H., Sakurai, T., Ichimoto, K., and Ueno, S.: 2000a, Publ. Astron. Soc. Japan 52, 465.

    Google Scholar 

  • Li, H., Sakurai, T., Ichimoto, K., and Ueno, S.: 2000b, Publ. Astron. Soc. Japan 52, 483.

    Google Scholar 

  • Lin, J., Forbes, T. G., and Isenberg, P. A.: 2001, J. Geophys. Res. 106, 25053.

    Google Scholar 

  • Lin, H., Penn, M. J., and Tomczyk, S.: 2000, Astrophys. J. 541, L83.

    Google Scholar 

  • Liu, Y. and Norton, A.: 2001, MDI Measurement Errors: The Magnetic Perspective, MDI Technical Note, TN-01-144, http://soi.stanford.edu/general/tech_notes.html.

  • Mandrini, C.H., van Driel-Gesztelyi, L., Thompson, B. J. et al.: 2000, Geof. Inter. 39, 73.

    Google Scholar 

  • Martres, M.-J., Michard, R., Soru-Iscovici, I., and Tsap, T. T.: 1968, Solar Phys. 5, 187.

    Google Scholar 

  • Pevtsov, A. A.: 2000, Astrophys. J. 531, 553.

    Google Scholar 

  • Plunkett, S., Brueckner, G. E., Dere, K. P. et al.: 1997, Solar Phys. 175, 699.

    Google Scholar 

  • Pope, T. and Mosher, J.: 1975, Solar Phys. 44, 3.

    Google Scholar 

  • Sakurai, T., Shibata, K., Ichimoto, K., Tsuneta, S., and Acton, L. W.: 1992, Publ. Astron. Soc. Japan 44, L123.

    Google Scholar 

  • Scherrer, P. H., Bogart, R. S., Bush, R. I. et al.: 1995, Solar Phys. 162, 129.

    Google Scholar 

  • Tang, Y. H., Mouradian, Z., Schmieder, B., Fang, C., and Sakurai, T.: 1999, Solar Phys. 185, 143.

    Google Scholar 

  • Thompson, B. J., Plunkett, S. P., Gurman, J. B. et al.: 1998, Geophys. Res. Lett. 25, 14, 2461.

    Google Scholar 

  • van Driel-Gesztelyi, L., Mandrini, C. H., Thompson B. et al.: 1999, in B. Schmieder, A. Hofmann, J. Staude. (eds.), Third Advances in Solar Physics Euroconference: Magnetic Fields and Oscillations, ASP Conference Series 184, 302.

  • Wang, H., Ewell, M. W. Jr., Zirin, H., and Ai, G.: 1994, Astrophys. J. 424, 436.

    Google Scholar 

  • Wang, H., Spirock, T. J., Jiong, Q. et al.: 2002, Astrophys. J. 576, 497.

    Google Scholar 

  • Wang, Y.-M. and Sheeley, N. R., Jr.: 1999, Astrophys. J. 510, 157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, L., Démoulin, P., Mandrini, C. et al. How are Emerging Flux, Flares and CMEs Related to Magnetic Polarity Imbalance in Midi Data?. Solar Physics 215, 307–325 (2003). https://doi.org/10.1023/A:1025678917086

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025678917086

Keywords

Navigation