Skip to main content
Log in

Geometric Convergence Rates for Time-Sampled Markov Chains

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We consider time-sampled Markov chain kernels, of the form P μ=∑ n μ n P n. We prove bounds on the total variation distance to stationarity of such chains. We are motivated by the analysis of near-periodic MCMC algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D. J., and Thorisson, H. (1993). Shift-coupling. Stoch. Proc. Appl. 44, 1–14.

    Google Scholar 

  2. Cowles, M. K. (2001). MCMC sampler convergence rates for hierarchical normal linear models: A simulation approach. Stat. Comput., to appear.

  3. Cowles, M. K., and Rosenthal, J. S. (1998). A simulation approach to convergence rates for Markov chain Monte Carlo algorithms. Stat. Comput. 8, 115–124.

    Google Scholar 

  4. Craiu, R. V., and Meng, X.-L. (2001). Antithetic coupling for perfect sampling. In Proceedings of the 2000 ISBA Conference.

  5. Doeblin, W. (1938). Exposé de la theorie des chaîines simples constantes de Markov à un nombre fini d'états. Rev. Math. Union Interbalkanique 2, 77–105.

    Google Scholar 

  6. Doob, J. I. (1953). Stochastic Processes, Wiley, New York.

    Google Scholar 

  7. Douc, R., Moulines, E., and Rosenthal, J. S. (2002). Quantitative convergence rates for inhomogeneous Markov chains. Submitted for publication.

  8. Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (eds.) (1996). Markov Chain Monte Carlo in Practice, Chapman & Hall, London.

    Google Scholar 

  9. Green, P. J., and Han, X.-L. (1992). Metropolis methods, Gaussian proposals, and antithetic variables. In Barone, P., et al. (eds.), Stochastic Models, Statistical Methods, and Algorithms in Image Analysis, Springer, Berlin.

    Google Scholar 

  10. Griffeath, D. (1975). A maximal coupling for Markov chains. Z. Wahrsch. verw. Gebiete 31, 95–106.

    Google Scholar 

  11. Jones, G. L., and Hobert, J. P. (2001). Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Stat. Sci. 16, 312–334.

    Google Scholar 

  12. Jones, G. L., and Hobert, J. P. (2002). Sufficient burn-in for Gibbs samplers for a hierarchical random effects model. Ann. Stat., to appear.

  13. Lindvall, T. (1992). Lectures on the Coupling Method, Wiley & Sons, New York.

    Google Scholar 

  14. Meyn, S. P., and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability, Springer-Verlag, London.

    Google Scholar 

  15. Meyn, S. P., and Tweedie, R. L. (1994). Computable bounds for convergence rates of Markov chains. Ann. Appl. Prob. 4, 981–1011.

    Google Scholar 

  16. Nummelin, E. (1984). General Irreducible Markov Chains and Non-Negative Operators, Cambridge University Press.

  17. Pitman, J. W. (1976). On coupling of Markov chains. Z. Wahrsch. verw. Gebiete 35, 315–322.

    Google Scholar 

  18. Roberts, G. O., and Rosenthal, J. S. (1997). Shift-coupling and convergence rates of ergodic averages. Commun. Stat.—Stochastic Models, 13(1), 147–165.

    Google Scholar 

  19. Roberts, G. O., and Rosenthal, J. S. (2000). Small and pseudo-small sets for Markov chains. Commun. Stat.—Stochastic Models, to appear.

  20. Roberts, G. O., and Tweedie, R. L. (1999). Bounds on regeneration times and convergence rates for Markov chains. Stoch. Proc. Appl. 80, 211–229.

    Google Scholar 

  21. Rosenthal, J. S. (1995a). Rates of convergence for Gibbs sampling for variance components models. Ann. Stat. 23, 740–761.

    Google Scholar 

  22. Rosenthal, J. S. (1995b). Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Stat. Assoc. 90, 558–566.

    Google Scholar 

  23. Rosenthal, J. S. (1995c). One-page supplement to Rosenthal (1995b). Available from http://probability.ca/jeff/research.html.

  24. Rosenthal, J. S. (1996). Analysis of the Gibbs sampler for a model related to James–Stein estimators. Stat. Comput. 6, 269–275.

    Google Scholar 

  25. Rosenthal, J. S. (2003). Asymptotic variance and convergence rates of nearly-periodic MCMC algorithms. J. Amer. Stat. Assoc. 98, 169–177.

    Google Scholar 

  26. Smith, A. F. M., and Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion). J. Roy. Stat. Soc. Ser. B 55, 3–24.

    Google Scholar 

  27. Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Ann. Stat. 22, 1701–1762.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenthal, J.S. Geometric Convergence Rates for Time-Sampled Markov Chains. Journal of Theoretical Probability 16, 671–688 (2003). https://doi.org/10.1023/A:1025672516474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025672516474

Navigation