Advertisement

Foundations of Physics

, Volume 33, Issue 6, pp 955–979 | Cite as

Exclusion Principles as Restricted Permutation Symmetries

  • S. Tarzi
Article
  • 76 Downloads

Abstract

We give a derivation of exclusion principles for the elementary particles of the standard model, using simple mathematical principles arising from a set theory of identical particles. We apply the theory of permutation group actions, stating some theorems which are proven elsewhere, and interpreting the results as a heuristic derivation of Pauli's Exclusion Principle (PEP) which dictates the formation of elements in the periodic table and the stability of matter, and also a derivation of quark confinement. We arrive at these properties by using a symmetry property of collections of the particles themselves as compared for example to the symmetry property of their wave function under interchange of two particles.

exclusion principles amorphous sets permutation groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Atiyah and P. Sutcliffe, “The geometry of point particles, ” Proc. Roy. Soc. Lond., Ser. A 458, 1089–1116 (2002).Google Scholar
  2. 2.
    P. A. Benioff, “Models of Zermelo Fraenkel set theory as carriers for the mathematics of physics, I and II, ” J. Math. Phys. 17, 618–649 (1976).Google Scholar
  3. 3.
    M. V. Berry and J. M. Robbins, “Indistinguishability for quantum particles: spin, statistics and the geometric phase, ” Proc. Roy. Soc. Lond., Ser. A 453, 1771–1790 (1997).Google Scholar
  4. 4.
    M. V. Berry and J. M. Robbins, “Quantum indistinguishability: Alternative constructions of the transported basis, ” J. Phys. A: Math. Gen. 33, L207-L214 (2000).Google Scholar
  5. 5.
    M. V. Berry and J. M. Robbins, “Quantum indistinguishability: Spin-statistics without relativity or field theory?, ” in Spin-Statistics Connection and Commutation Relations, R. C. Hilbron and G. M. Tino, eds. (American Institute of Physics, 2000).Google Scholar
  6. 6.
    W. Boos, “Metamathematical quantum theory, I, ” J. Symbolic Logic 53, 1289–1290 (1988).Google Scholar
  7. 7.
    M. Born, “Physical reality, ” in Interpreting Bodies: Classical and Quantum Objects in Modern Physics, E. Castellani, ed. (Princeton University Press, Princeton, 1998).Google Scholar
  8. 8.
    N. Brunner, K. Svozil, and M. Baaz, “The axiom of choice in quantum theory, ” Math. Logic Quart. 42, 319–340 (1996).Google Scholar
  9. 9.
    P. J. Cameron, Permutation Groups (Cambridge University Press, Cambridge, 1999).Google Scholar
  10. 10.
    P. J. Cameron and S. Tarzi, “Group actions on amorphous sets, ” in preparation.Google Scholar
  11. 11.
    T.-P. Cheng and L.-F. Li, Gauge Theory of Elementary Particle Physics (Cambridge University Press, Cambridge, 1999).Google Scholar
  12. 12.
    D. Constantini and U. Garibaldi, “Elementary particle statistics reconsidered, ” Phys. Lett. A. 134, 161–164 (1988).Google Scholar
  13. 13.
    G. D. Coughlan and J. E. Dodd, The Ideas of Particle Physics (Cambridge University Press, Cambridge, 1994).Google Scholar
  14. 14.
    P. Creed and J. K. Truss, “On o-amorphous sets, ” Ann. Pure Appl. Logic 101, 185–226 (2000).Google Scholar
  15. 15.
    P. Creed and J. K. Truss, “On quasi-amorphous sets, ” Archive for Mathematical Logic 40, 581–596 (2001).Google Scholar
  16. 16.
    J. D. Dixon and B. Mortimer, Permutation Groups (Graduate Texts in Mathematics 163) (Springer, 1996).Google Scholar
  17. 17.
    I. Duck and E. C. G. Sudarshan, “Toward an understanding of the spin-statistics theorem, ” Amer. J. Phys. 66, 284–303 (1998).Google Scholar
  18. 18.
    I. Duck and E. C. G. Sudarshan, Pauli and the Spin-Statistics Theorem (World Scientific, Singapore, 1997).Google Scholar
  19. 19.
    P. Ehrenfest and J. R. Oppenheimer, “Note on the statistics of nuclei, ” Phys. Rev. 37, 333–338, (1931).Google Scholar
  20. 20.
    C. P. Enz, No Time to Be Brief: A Scientific Biography of Wolfgang Pauli (Oxford University Press, 2002).Google Scholar
  21. 21.
    T. E. Forster and J. K. Truss, “Non-well-foundedness of well-orderable power sets, ” (University of Leeds, 2002), to appear in Journal of Symbolic Logic.Google Scholar
  22. 22.
    S. French and D. Krause, “The logic of quanta, ” in Conceptual Foundations of Quantum Field Theory, T. Y. Cao, ed. (Cambridge University Press, Cambridge, 1999).Google Scholar
  23. 23.
    S. French, “Models and mathematics in physics: The role of group theory, ” in From Physics to Philosophy, J. Butterfield and C. Pagonis, eds. (Cambridge University Press, Cambridge, 2000).Google Scholar
  24. 24.
    C. Fuchs and A. Peres, “Quantum theory needs no 'interpretation', ” Physics Today 70 (March 2000).Google Scholar
  25. 25.
    O. W. Greenberg, “Parafield theory, ” in Mathematical Theory of Elementary Particles, R. Goodman and I. Segal, eds. (M.I.T. Press, Cambridge, Massachusetts, 1966).Google Scholar
  26. 26.
    W. Heisenberg, Z. Phys. 38, 411(1926).Google Scholar
  27. 27.
    G. 't Hooft, “How does God play dice? (pre-)determinism at the Planck scale, ” an Essay in honour of John S. Bell. hep-th/0104219, 25 April 2001.Google Scholar
  28. 28.
    G. 't Hooft, “Quantum mechanics and determinism, ” presented at PASCOS 2001, Eighth International Symposium on Particles, Strings and Cosmology, UNC at Chapel Hill, April 10–15, 2001. hep-th/0105105, 11 May 2001.Google Scholar
  29. 29.
    T. J. Jech, The Axiom of Choice (North-Holland, Amsterdam, 1973).Google Scholar
  30. 30.
    J. Jolie, “Uncovering supersymmetry, ” Sci. Am. 287 (July, 2002).Google Scholar
  31. 31.
    R. Kerner, “ℤ3-Graded ternary algebras, new gauge theories and quarks, ” in Topics in Quantum Field Theory: Modern Methods in Fundamental Physics, D. Tchrakian, ed. (World Scientific, Singapore, 1996).Google Scholar
  32. 32.
    W. Ketterle, “Experimental studies of Bose–Einstein condensation, ” Physics Today 52, 30(1999).Google Scholar
  33. 33.
    D. Krause, A. S. Sant'Anna, and A. G. Volkov, “Quasi-set theory for bosons and fermions: Quantum distributions, ” Found. Phys. Lett. 12(1), 51–66 (1999).Google Scholar
  34. 34.
    M. G. G. Laidlaw and C. Morette DeWitt, “Feynman functional integrals for systems of indistinguishable particles, ” Phys. Rev. D 3(6), 1375–1378 (1971).Google Scholar
  35. 35.
    A. Levy, “The independence of various definitions of finiteness, ” Fund. Math. 46, 1–13 (1958).Google Scholar
  36. 36.
    H. J. Lipkin, “Particle physics for nuclear physicists, ” in Physique Nucleaire, Les Houches, 1968, C. de Witt and V. Gillet, eds. (Gordon & Breach, New York, 1969).Google Scholar
  37. 37.
    H. J. Lipkin, “Frontiers of the quark model, ” in The Elementary Structure of Matter, J.-M. Richard, E. Aslanides, and N. Boccara, eds. (Springer, Berlin, 1988).Google Scholar
  38. 38.
    G. W. Mackey, The Mathematical Foundations of Quantum Mechanics (Benjamin, New York, 1963).Google Scholar
  39. 39.
    Yu. I. Manin, “Problems of present day mathematics: I (foundations), ” in Proceedings of Symposia in Pure Mathematics, Vol. 28, F. E. Browder, ed. (American Mathematical Society, Providence, 1976).Google Scholar
  40. 40.
    G. S. Mendick and J. K. Truss, “A notion of rank in set theory without choice, ” University of Leeds preprint, 24, 2001. To appear in Archive for Mathematical Logic.Google Scholar
  41. 41.
    R. Mirman, “Experimental meaning of the concept of Identical Particles, ” Nuovo Cimento B 18, 110(1973).Google Scholar
  42. 42.
    S. Nussinov and M. A. Lampert, “QCD inequalities, ” Phys. Rep. 362(4), 193–301 (2002).Google Scholar
  43. 43.
    W. A. Perkins, “Quasibosons” Internat. J. Theoret. Phys. 41, 823–838 (2002).Google Scholar
  44. 44.
    A. Sant'Anna, J. de Souza, and D. de Freitas, “Indistinguishable particles and hidden variables: Part II, ” Found. Phys. Lett. 13, 69–77 (2000).Google Scholar
  45. 45.
    S. Tarzi, “Group actions on amorphous sets and reducts of coloured random graphs, ” Ph.D. thesis (Queen Mary, University of London, 2002). This can be found at http:// www.maths.qmul.ac.uk/∼st.Google Scholar
  46. 46.
    G. Temple, 100 Years of Mathematics (Duckworth, 1981).Google Scholar
  47. 47.
    J. Tersoff and D. Bayer, “Quantum statistics for distinguishable particles, ” Phys. Rev. Lett. 50, 553–554 (1983).Google Scholar
  48. 48.
    J. Truss, “Permutations and the axiom of choice” in Automorphisms of First-Order Structures, R. Kaye and D. Macpherson, eds. (Clarendon Press, Oxford, 1994).Google Scholar
  49. 49.
    J. K. Truss, “The structure of amorphous sets, ” Ann. Pure Appl. Logic 73, 191–233 (1995).Google Scholar
  50. 50.
    B. C. van Fraassen, Quantum Mechanics: An Empiricist View (Clarendon, Oxford, 1991).Google Scholar
  51. 51.
    H. Weyl, The Theory of Groups and Quantum Mechanics (Methuen, London, 1931).Google Scholar
  52. 52.
    H. Weyl, Gesammelte Abhandlungen (Springer, Berlin, 1968).Google Scholar
  53. 53.
    F. Wilczek, “Projective statistics and spinors in Hilbert space, ” hep-th/9806228.Google Scholar
  54. 54.
    F. Wilczek, “Quantum field theory, ” Rev. Mod. Phys. 71, S85-S95 (1999).Google Scholar
  55. 55.
    F. Wilczek, “Fermi and the elucidation of matter, ” opening talk at the celebration of Fermi's 100th birthday, Chicago, September 29, 2001. To be published in Fermi Remembered, J. Cronin, ed. (University of Chicago Press).Google Scholar
  56. 56.
    M. J. York, “Permutation symmetry for many particles, ” quant-ph/9912057.Google Scholar
  57. 57.
    M. J. York, “Identity, geometry, permutation and the Spin-Statistics Theorem, ” quant-ph/9908078Google Scholar
  58. 58.
    A. Zee, “Speculations on spin and statistics, ” in Spin-Statistics Connection and Commutation Relations, R. C. Hilbron and G. M. Tino, eds. (American Institute of Physics, 2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • S. Tarzi
    • 1
  1. 1.School of Mathematical Sciences, Queen MaryUniversity of LondonLondonUnited Kingdom

Personalised recommendations