Transquantum Dynamics


Segal proposed transquantum commutation relations with two transquantum constants ħ′, ħ″ besides Planck's quantum constant ħ and with a variable i. The Heisenberg quantum algebra is a contraction—in a more general sense than that of Inönü and Wigner—of the Segal transquantum algebra. The usual constant i arises as a vacuum order-parameter in the quantum limit ħ′,ħ″→0. One physical consequence is a discrete spectrum for canonical variables and space-time coordinates. Another is an interconversion of time and energy accompanying space-time meltdown (disorder), with a fundamental conversion factor of some kilograms of energy per second.

This is a preview of subscription content, log in to check access.


  1. 1.

    F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A 6, 2211(1972).

    Google Scholar 

  2. 2.

    N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, “Contraction of the finite one-dimensional oscillator, ” Internat. J. Mod. Phys. A 18, 317–327 (2003).

    Google Scholar 

  3. 3.

    J. Baugh, D. Finkelstein, A. Galiautdinov, and H. Saller, J. Math. Phys. 42, 1489(2001).

    Google Scholar 

  4. 4.

    D. Finkelstein, Quantum Relativity (Springer, New York, 1996).

    Google Scholar 

  5. 5.

    D. Finkelstein and A. Galiautdinov, J. Math. Phys. 42, 3299(2001).

    Google Scholar 

  6. 6.

    A. A. Galiautdinov, IJTP 41, 1423(2002).

    Google Scholar 

  7. 7.

    A. A. Galiautdinov and D. R. Finkelstein, J. Math. Phys. 43, 4741(2002).

    Google Scholar 

  8. 8.

    E. Inönü, “Contraction of Lie groups and their representations, ” in Group Theoretical Concepts and Methods in Elementary Particle Physics, F. Gürsey, ed. (Gordon & Breach, New York, 1964), pp. 391–402.

    Google Scholar 

  9. 9.

    E. Inönü and E. P. Wigner, Proc. Nat. Acad. Sci. 39, 510(1952).

    Google Scholar 

  10. 10.

    A. Kuzmich, N. P. Bigelow, and L. Mandel, Europhys. Lett. A 42, 481(1998). A. Kuzmich, L. Mandel, J. Janis, Y. E. Young, R. Ejnisman, and N. P. Bigelow, Phys. Rev. A 60, 2346 (1999). A. Kuzmich, L. Mandel, and N. P. Bigelow, Phys. Rev. Lett. 85, 1594 (2000).

    Google Scholar 

  11. 11.

    C. Nayak and F. Wilczek, Nucl. Phys. B 479, 529(1996).

    Google Scholar 

  12. 12.

    I. E. Segal, Duke Math. J. 18, 221(1951).

    Google Scholar 

  13. 13.

    F. Wilczek, Nucl. Phys. Proc. Suppl. 68, 367(1998); also hep-th/9710135.

    Google Scholar 

  14. 14.

    F. Wilczek, hep-th/9806228 [LANL].

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baugh, J., Finkelstein, D.R., Galiautdinov, A. et al. Transquantum Dynamics. Foundations of Physics 33, 1267–1275 (2003).

Download citation

  • transquantum
  • group contraction
  • chronon