Skip to main content
Log in

PTCR Effect in BaTiO3: Structural Aspects and Grain Boundary Potentials

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Extensive microstructural and structure-property studies on donor doped barium titanate have revealed that the PTCR phenomenon is strongly controlled by the density, number of grain boundaries available to conduction, domain orientation and grain boundary domain coherence. Structural heterogeneities lead to a wide range of grain boundary structures, potential barriers and, therefore, depletion widths. Conduction thus occurs primarily by percolation of electrons through favorably aligned domain pathways and low potential barrier grain boundaries. At the Curie point, the increase in the potential barriers along these pathways is likely to dominate the PTCR effect. To improve theoretical understanding a model needs to take heed of local values of parameters and also incorporate the fact that the bulk of the current flow is only through a certain percentage of grain boundaries. The specific structural factors that have led to an improved qualitative understanding of overall PTCR phenomenon are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Goodman, J. Am. Cer. Soc., 46, 48 (1963).

    Google Scholar 

  2. W. Heywang, Solid State Electron., 3, 51 (1961).

    Google Scholar 

  3. G.H. Jonker, Solid State Electron., 7, 895 (1964).

    Google Scholar 

  4. J. Daniels and R. Wernicke, Philips Res. Repts., 31, 544 (1976).

    Google Scholar 

  5. B.M. Kulwicki and A.J. Purdes, Ferroelectrics, 1, 253 (1970).

    Google Scholar 

  6. R.D. Roseman, J. Kim, and R.C. Buchanan, Ferroelectrics, 177, 273 (1996).

    Google Scholar 

  7. R.D. Roseman, J. Kim, and R.C. Buchanan, Ferroelectrics, 177, 255 (1996).

    Google Scholar 

  8. R.D. Roseman, J. Kim, and R.C. Buchanan, Cer. Trans., 41, 153 (1994).

    Google Scholar 

  9. R.D. Roseman, Ferroelectrics, 215, 31 (1998).

    Google Scholar 

  10. G. Liu and R.D. Roseman, Ferroelectrics, 221, 181 (1999).

    Google Scholar 

  11. G. Liu and R.D. Roseman, J. Mat. Sci. Lett., 18, 1875 (1999).

    Google Scholar 

  12. N. Mukherjee, R.D. Roseman, and Q. Zhang, J. Phys. Chem. Solids, 63, 631 (2002).

    Google Scholar 

  13. M. Kuwabara, J. Am. Cer. Soc., 64, 639 (1981).

    Google Scholar 

  14. R.D. Roseman and R.C. Buchanan, in Procs. IEEE ISAF (Urbana, IL, 1992).

  15. H.M. Al-Allak, G.J. Russell, and J. Woods, J. Phys. D: Appl. Phys., 20, 1645 (1987).

    Google Scholar 

  16. X. Ren and K. Otsuka, MRS Bull., 115 (Feb. 2002).

  17. G.L. Sewell, Phys. Rev., 124, 597 (1963).

    Google Scholar 

  18. L. Friedman, Phys. Rev., 135, A233 (1964).

    Google Scholar 

  19. D. Emin, J.T. Devrees, and V.E. vanDoren, in Linear and Nonlinear Electron Transport in Solids (Plenum Press, New York).

  20. I. Bunget and M. Popescu, in Physics of Solid Dielectrics, Materials Science Monographs, edited by C. Laird (Elsevier, 1984), vol. 19, p. 348.

  21. B.A. Strukov and A.P. Levanyuk, in Ferroelectric Phenomena in Crystals (Springer, 1998), Ch. 10, p. 193.

  22. J. Weertman and J. Weertman, in Elementary Dislocation Theory (Oxford University Press, 1992).

  23. S.B. Desu and D.A. Payne, J. Am. Cer. Soc., 73, 3407 (1990).

    Google Scholar 

  24. C.N. Berglund and W.S. Baer, Phys. Rev., 157, 358 (1967).

    Google Scholar 

  25. S.I. Yakunin, V.V. Shakmanov, G.V. Spivak, and N.V. Vasil'eva, Soviet Physics-Solid State, 14(2), 310 (1972).

    Google Scholar 

  26. I.S. Zheludev, in Physics of Crystalline Dielectrics, edited by A. Tybulewicz (Plenum Press, New York, 1971), vol. 1.

    Google Scholar 

  27. J.S. Capurso, A.B. Alles, and W.A. Schulze, J. Am. Cer. Soc., 78(9), 2476 (1995).

    Google Scholar 

  28. J.S. Capurso and W.A. Schulze, IEEE ISAF, 731 (1994).

  29. M. Kuwabara and K. Hamamoto, J. of Intelligent Material Systems and Structures, 10(6), 434 (2000).

    Google Scholar 

  30. M. Kuwabara, H. Matsuda, and K. Hamamoto, J. Am. Cer. Soc., 80(7), 1881 (1997).

    Google Scholar 

  31. Y. Chiang and T. Takagi, J. Am. Cer. Soc., 73, 3278 (1990).

    Google Scholar 

  32. B. Huybrechts and M. Takata, Key Eng. Matls., 111/112, 39 (1995).

    Google Scholar 

  33. E. Scholl, J. Appl. Phys., 60, 1434 (1986).

    Google Scholar 

  34. B.M. Kulwicki, J. Phys. Chem. Solids, 45, 1015 (1984).

    Google Scholar 

  35. N. Mukherjee and R.D. Roseman, Ferroelectrics, 281, 1 (2002).

    Google Scholar 

  36. G.D. Mahan, L.M. Levinson, and H.R. Philipp, Appl. Phys. Lett., 33, 830 (1978).

    Google Scholar 

  37. G.D. Mahan, L.M. Levinson, and H.R. Philipp, J. Appl. Phys., 50, 2799 (1979).

    Google Scholar 

  38. H.M. Al-Allak, J. Illingsworth, A.W. Brinkman, and J. Woods, J. Phys. D: Appl. Phys., 22, 1920 (1989).

    Google Scholar 

  39. P. Gerthsen and B. Hoffman, Solid-State Electron., 16, 617 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roseman, R., Mukherjee, N. PTCR Effect in BaTiO3: Structural Aspects and Grain Boundary Potentials. Journal of Electroceramics 10, 117–135 (2003). https://doi.org/10.1023/A:1025647806757

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025647806757

Navigation