Skip to main content
Log in

Enhanced performance of fluorine substituted hydroxyapatite composites for hard tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Dense fluorine (F) substituted hydroxyapatite composites with yttria-doped zirconia (Y-TZP) and/or alumina (Al2O3) were successfully fabricated without applying pressure at 1400 °C for 3 h. The suppression of decomposition via the formation of a fluor-hydroxyapatite (FHA) solid solution allowed the sintered body to reach full density. Such fully densified FHA-composites exhibited improved mechanical properties, such as strength, toughness, and hardness, having values of more than ∼2–4 times higher than those of pure HA or HA-composites. The proliferation behavior of osteoblast-like cells on the FHA-composites showed no cytotoxicity and comparable cell viability to that observed in pure HA for up to 10 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. Hench, J. Am. Ceram. Soc. 74 (1991) 1487.

    Google Scholar 

  2. R. Z. Legeros, Prog. Cryst. Grow. Char. 4 (1981) 1.

    Google Scholar 

  3. K. De Groot, C. De Putter, P. Smitt and A. Driessen, Sci. Ceram. 11 (1981) 433.

    Google Scholar 

  4. E. Champion, S. Gautier and D. Bernache, J. Mater. Sci. Mater. Med. 7 (1996) 125.

    Google Scholar 

  5. H.-W. Kim, Y.-J. Noh, Y.-H. Koh, H.-E. Kim and H.-M. Kim, Biomaterials 22 (2002) 4113.

    Google Scholar 

  6. J. Li, H. Liao and L. Hermansson, ibid. 17 (1996) 1787.

    Google Scholar 

  7. J. Huaxia and P. M. Marquis, J. Mater. Sci. 28 (1993) 1941.

    Google Scholar 

  8. A. Krajewski, A. Ravaglioli, N. Roveri, A. Bigi and E. Foresi, ibid. 25 (1990) 3203.

    Google Scholar 

  9. E. C. Moreno, M. Kresak and R. T. Zahradnik, Nature 247 (1974) 64.

    Google Scholar 

  10. R. Z. Legeros, L. M. Silverstone, G. Daculsi and L. M. Kerebel, J. Dent. Res. 62 (1985) 138.

    Google Scholar 

  11. F. B. Ayed, J. Bouaziz and K. Bouzouita, J. Eur. Ceram. Soc. 20 (2000) 1069.

    Google Scholar 

  12. W. Rajarao and R. F. Boehem, J. Dent. 53 (1974) 1351.

    Google Scholar 

  13. P. Chantilkul, G. R. Anstis, B. R. Lawn and D. B. Marshall, J. Am. Ceram. Soc. 64 (1981) 539.

    Google Scholar 

  14. X. Yang and Z. Wang, J. Mater. Chem. 8 (1998) 2233.

    Google Scholar 

  15. L. J. Jha, S. M. Best, J. C. Knowles, I. Rehman, J. D. Santos and W. Bonfield, J. Mater. Sci. Mater. Med. 8 (1997) 185.

    Google Scholar 

  16. M. J. Larsen and S. J. Jensen, Archs. Oral Biol. 34 (1989) 969.

    Google Scholar 

  17. R. W. Rice, in ‘Treatise on Materials Science and Technology’, Vol. 11, edited by R. K. MacCrone (Academy, New York, 1977) p. 199.

    Google Scholar 

  18. M. A. Lopes, F. J. Monteiro and J. D. Santos, J. Biomed. Mater. Res. 48 (1999) 734.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HW., Noh, YJ., Koh, YH. et al. Enhanced performance of fluorine substituted hydroxyapatite composites for hard tissue engineering. Journal of Materials Science: Materials in Medicine 14, 899–904 (2003). https://doi.org/10.1023/A:1025638811361

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025638811361

Keywords

Navigation