Skip to main content
Log in

New Tractable Classes From Old

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

The constraint satisfaction problem is known to be NP-hard in general, but a number of restrictions of the problem have been identified over the years which ensure tractability. This paper introduces two simple methods of combining two or more tractable classes over disjoint domains, in order to synthesise larger, more expressive tractable classes. We demonstrate that the classes so obtained are genuinely novel, and have not been previously identified. In addition, we use algebraic techniques to extend the tractable classes which we identify, and to show that the algorithms for solving these extended classes can be less than obvious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, M. Lights out type games, Website at http://www.haar.clara.co.uk/Lights.

  2. Bjäreland, M., & Johnsson, P. (1999). Exploiting bipartiteness to identify yet another tractable subclass of CSP. In Jaffar, J., ed., Principles and Practice of Constraint Programming — CP'99, number 1713 in Lecture Notes in Computer Science, Springer, pages 118-;128.

  3. Bulatov, A. A., & Jeavons, P. (2000). Tractable constraints closed under a binary operation. Oxford University Computing Laboratory Technical Report, number PRG-;TR-;12-;00.

  4. Bulatov, A. A., Krokhin, A. A., & Jeavons, P. (2000). Constraint satisfaction problems and finite algebras. In Proceedings 27th International Colloquium on Automata, Languages and Programming-;ICALP'00, Vol. 1853 of Lecture Notes in Computer Science, pages 272-;282, Springer-;Verlag.

    Google Scholar 

  5. Bulatov, A. A., Krokhin, A. A., & Jeavons, P. The complexity of maximal constraint languages. In Proceedings 33rd Annual ACM Symposium on Theory of Computing-;STOC'01, pages 667-;674.

  6. Cohen, D., Jeavons, P., Jonsson, P., & Koubarakis, M. (2000). Building tractable disjunctive constraints. Journal of the ACM, 47: 826-;853.

    Google Scholar 

  7. Cohn, P. (1965). Universal Algebra. Harper & Row.

  8. Cooper, M., Cohen, D., & Jeavons, P. (1994). Characterising tractable constraints. Artificial Intelligence, 65: 347-;361.

    Google Scholar 

  9. Dalmau, V. (2000). A new tractable class of constraint satisfaction problems. In 6th International Symposium on Mathematics and Artificial Intelligence.

  10. Dalmau, V., & Pearson, J. (1999). Closure functions and width 1 problems. In Jaffar, J., ed., Principles and Practice of Constraint Programming-;CP'99, number 1713 in Lecture Notes in Computer Science, pages 159-;173, Springer.

  11. Garey, M., & Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of NP-;Completeness. San Francisco, CA.: Freeman.

    Google Scholar 

  12. Feder, T., & Vardi, M. Y. (1998). The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory. SIAM J. Computing, 28(1): 57-;104.

    Google Scholar 

  13. Jeavons, P., & Cohen, D. (1995). An algebraic characterization of tractable constraints. In Computing and Combinatorics. First International Conference COCOON'95 (Xi'an, China, August 1995), Vol. 959 of Lecture Notes in Computer Science, pages 633-;642, Springer-;Verlag.

    Google Scholar 

  14. Jeavons, P., Cohen, D., & Gyssens, M. (1995). A unifying framework for tractable constraints. In Proceedings 1st International Conference on Constraint Programming — CP'95 (Cassis, France, September dy1995), Vol. 976 of Lecture Notes in Computer Science, pages 276-;291, Springer-;Verlag.

    Google Scholar 

  15. Jeavons, P., & Cooper, M. (1995). Tractable constraints on ordered domains. Artificial Intelligence, 79(2): 327-;339.

    Google Scholar 

  16. Jeavons, P., Cohen, D., & Gyssens, M. (1996). A test for tractability. In Proceedings 2nd International Conference on Constraint Programming-;CP'96 (Boston, August 1996), Vol. 1118 of Lecture Notes in Computer Science, pages 267-;281, Springer-;Verlag.

    Google Scholar 

  17. Jeavons, P., Cohen, D., & Gyssens, M. (1997). Closure properties of constraints. Journal of the ACM, 44: 527-;548.

    Google Scholar 

  18. Jeavons, P. (1998). On the algebraic structure of combinatorial problems. Theoretical Computer Science, 200: 185-;204.

    Google Scholar 

  19. Jeavons, P. G., Cohen, D. A., & Pearson, J. K. (1999). Constraints and universal algebra. Annals of Mathematics and Artificial Intelligence, 24: 51-;67.

    Google Scholar 

  20. Jonsson, P., Drakengren, T., & Bäckström, C. (1999). Computational complexity of relating time points with intervals. Artificial Intelligence, 109(1-;2): 273-;295.

    Google Scholar 

  21. Kirousis, L. (1993). Fast parallel constraint satisfaction. Artificial Intelligence, 64: 147-;160.

    Google Scholar 

  22. Koubarakis, M. (1997). From local to global consistency in temporal constraint networks. Theoretical Computer Science, 173: 89-;112 (February).

    Google Scholar 

  23. Krokhin, A., Jeavons, P., & Jonsson, P. (2001). A complete classification of complexity in Allen's algebra in the presence of a non-;trivial basic relation. In Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI-;01), pages 83-;88.

  24. Ladkin, P., & Maddux, R. (1994). On binary constraint problems. Journal of the ACM, 41: 435-;469.

    Google Scholar 

  25. Mackworth, A. (1977). Consistency in networks of relations. Artificial Intelligence, 8: 99-;118.

    Google Scholar 

  26. McKenzie, R., McNulty, G., & Taylor, W. (1987). Algebras, Lattices and Varieties, Vol. I. California: Wadsworth and Brooks.

    Google Scholar 

  27. Montanari, U. (1974). Networks of constraints: fundamental properties and applications to picture processing. Information Sciences, 7: 95-;132.

    Google Scholar 

  28. Nebel, B., & Burckert, H.-;J. (1995). Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra. Journal of the ACM, 42: 43-;66.

    Google Scholar 

  29. Schaefer, T. (1978). The complexity of satisfiability problems. In Proceedings 10th ACM Symposium on Theory of Computing (STOC), pages 216-;226.

  30. van Beek, P., & Dechter, R. (1995). On the minimality and decomposability of row-;convex constraint networks. Journal of the ACM, 42: 543-;561.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, D., Jeavons, P. & Gault, R. New Tractable Classes From Old. Constraints 8, 263–282 (2003). https://doi.org/10.1023/A:1025623111033

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025623111033

Navigation