Skip to main content
Log in

Success in Mating: A Coordinated Approach to Fitness Through Genotypes Incorporating Genes for Stress Resistance and Heterozygous Advantage Under Stress

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Natural populations are normally exposed to substantial environmental stress. In these circumstances, an association occurs between success in mating and extremes of sexual ornaments, rapid development, long life span, and low fluctuating morphological asymmetry. This association between important fitness traits depends on high metabolic efficiency underlain by genes for stress resistance and heterozygous advantage. In particular, the high energy demands from the development and maintenance of sexual ornaments imply that the “good genes” favored in the sexual selection process should be stress resistant. However, the generalized heterozygous advantage under stress suggests that many interacting genes are involved in promoting metabolic efficiency, so that the “good genes” approach should be replaced by a “good genotypes” approach. This “good genotype” approach has predictive power for incorporating additional fitness traits, especially where metabolic consequences can be perceived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Allendorf, F. W., and Leary, R. F. (1986). Heterozygosity and fitness in natural populations of animals. In Soule, M. E. (ed.), Conservation Biology,Sinauer Associates, Sunderland, MA, pp. 57-76.

    Google Scholar 

  • Anderson, W. W., Levine, L. Olivera, O., Powell, J. R., de la Rosa, M. E., Salceda, V. M., Gaso, M, L, and Guzman, J. (1979). Evidence for selection by male mating success in natural populations of Drosophila pseudoobsura. Proc. Nail. Acad. Set. USA 76:1519-1523.

    Google Scholar 

  • Andersson, M. (1994). Sexual Selection,Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Belyaev, D. K., and Borodin, P. M. (1982). The influence of stress on variation and its role in evolution. Biol. Zbl100: 705-714.

    Google Scholar 

  • Bennett, A. F. (1991). The evolution of activity capacity. J, Exp. Biol. 160:1-23.

    Google Scholar 

  • Berry, R. J. (1996). Environmental stress and evolutionary adaptation. In Bittlcs, A. H., and Parsons, P. A. (eds.), Stress: Evolutionary, Biosocial and Clinical Perspectives,Gallon Institute and Macmillan, London.

    Google Scholar 

  • Berry, R. J., and Bradshaw, A. D. (1991). Genes in the real world. In Berry, R. J., Crawford, T. S., and Hewitt, G. M. (eds.), Genes in Ecology,Blackwell Scientific, Oxford.

    Google Scholar 

  • Boake, C. R. B. (1986). A method for testing adaptive hypotheses for mate choice. Am. Nat.127:654-666.

    Google Scholar 

  • Brittnacher, J. C. (1981). Genetic variation and genetic load due to the male reproductive component of fitness in Drosophila Genetics 97:719-730.

    Google Scholar 

  • Brown, J. H., Marquet, P. A., and Taper, M. L. (1993). Evolution of body size: Consequences of an energetic definition of fitness. Am. Nat.142:373-384.

    Google Scholar 

  • Clarke, G. M. (1995). Relationships between developmental stability and fitness: Applications for conservation biology. Conserv. Biol.9:18-24.

    Google Scholar 

  • Cordero, A. (1995). Correlates of male mating success in two natural populations of the damsclfly Ischnura graellsii (Odonata: Coenagrionidae). Ecol. Eatomol.20:213-222.

    Google Scholar 

  • Fisher, R. A. (1930). The Genetical Theory of Natural Selection,Clarendon Press, Oxford.

    Google Scholar 

  • Fitzsimmons, N. N., Buskirk, S. W., and Smith, M. H. (1995). Population history, genetic variability, and horn growth in bighorn sheep. Conserv. Biol.9:314-323.

    Google Scholar 

  • Fulker, D. W. (1966). Mating speed in Drosophila mclanogaster: a psychogenetic analysis. Science133:203-205.

    Google Scholar 

  • Garrett, L. (1994). The Coming Plague: Newly Emerging Diseases in a world out of Balance, Virago Press, London.

    Google Scholar 

  • Hamilton, W. D., and Zuk, M. (1982). Heritable true fitness and bright birds: A role for parasites? Science218:384-387.

    Google Scholar 

  • Harvey, I. F., and Walsh, K. J. (1993). Fluctuating asymmetry and lifetime mating success are correlated in males of the damselfly Coenagrion puella (Odonata: Coenagrionidae). Ecol. Entomol.18:198-202.

    Google Scholar 

  • Hawkins, A. J. S., Bayne, B. L., and Day, A. J. (1986) Protein turnover, physiological energetics and heterozygosity in the bivalve mussel, Mytilus edulis: The basis of variable age-specific growth. Proc. Roy. Soc. Land. B229:161-176.

    Google Scholar 

  • Hoffmann, A. A., and Parsons, P. A. (1989). An integrated approach to environmental stress tolerance and life-history variation. Desiccation tolerance in Drosophila. Biol. J. Linn. Soc. 37:117-136.

    Google Scholar 

  • Hoffmann, A. A., and Parsons, P. A. (1991). Evolutionary Genetics and Environmental Stress, Oxford University Press, Oxford.

    Google Scholar 

  • Hoffmann, A. A., and Parsons, P. A. (1993). Selection for adult desiccation resistance in Drosophila melanogaster. Fitness components, larval resistance and stress correlations. Biol. J. Linn. Soc. 48:43-54.

    Google Scholar 

  • Hogg, J. T. (1987). Intrasexual competition and mate choice in Rocky Mountain bighorn sheep. Ethology75:119-144.

    Google Scholar 

  • Kodrick-Brown, A., and Brown, J. H. (1984). Truth in advertising: The kinds of traits favored by sexual selection. Am. Nat. 124:309-323.

    Google Scholar 

  • Koehn, R. K., and Bayne, B. L. (1989). Towards a physiological and genetical understanding of the stress response. Biol. J. Linn. Soc.37:157-171.

    Google Scholar 

  • Lithgow, G. J., White, T. M., Melov, S., and Johnson, T. E. (1995). Thcrmotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Set. USA92:7540-7544.

    Google Scholar 

  • Lynch, C. B. (1992). Clinal variation in cold adaptation in Mus domesticus: Verification of predictions from laboratory populations. Am. Nat.139:1219-1236.

    Google Scholar 

  • Milton, J. B. (1993a). Enzyme heterozygosity, metabolism, and developmental variability. Genetica89:47-63.

    Google Scholar 

  • Mitton, J. B. (1993b). Theory and data pertinent to the relationship between heterozygosity and fitness. In Thomhill, N. W. (ed.), The Natural History of Inbreeding and Outbreeding. Theoretical and Empirical Perspectives, University of Chicago Press, Chicago, pp. 17-41.

    Google Scholar 

  • Mitton, J. B., and Grant, M. C. (1984). Associations among protein heterozygosity, growth rate, and developmental homeostasis. Annu. Rev. Ecol. Syst.15:479-489.

    Google Scholar 

  • Mailer, A. P. (1994). Male ornament size as a reliable cue to enhanced offspring viability in the barn swallow. Proc. Natl Acad. Sci. USA 91:6929-6932.

    Google Scholar 

  • Moore, A. J. (1994). Genetic evidence for the "good genes" process of sexual selection. Behav. Ecol. Sociobiol. 35: 235-241.

    Google Scholar 

  • Muller, G., and Ward, P. I. (1995). Parasitism and heterozygosity influence the secondary sexual characters of the European minnow, Phoxinus phoxinus (L:) (Cyprinidae). Ethology100:309-319.

    Google Scholar 

  • Naugler, C. T., and Leech, S. M. (1994). Fluctuating asymmetry and survival ability in the forest tent caterpillar moth Malacosoma disstria: Implications for pest management. Entomol. Exp. Appl.70:295-298.

    Google Scholar 

  • Nevo, E. (1991). Evolutionary theory and processes of active speciation and adaptive radiation in subterranean mole rats, Spalax ehrenbergi superspecies, in Israel. Evot. Biol.25:1-125.

    Google Scholar 

  • Nevo, E., Simson, S., Heth, G., and Beiles, A. (1992). Adaptive pacifistic behavior in subterranean mole rats in the Sahara desert, contrasting to and originating from polymorphic aggression in Israeli species. Behavior123:71-76.

    Google Scholar 

  • Nevo, E., Filippueci, M. G., and Beiles, A. (1994). Genetic polymorphisms in subterranean mammals (Spalax ehrenbergi superspecies) in the Near East revisited: Patterns and theory. Heredity72:465-487.

    Google Scholar 

  • Nilsson, J.-A. (1994). Energetic stress and the degree of fluctuating asymmetry: Implications for a long-lasting honest signal. Evol. Ecol.8:248-255.

    Google Scholar 

  • Norris, K. (1993). Heritable variation in a plumage indicator of viability in male great tits Pants major. Nature362: 537-539.

    Google Scholar 

  • Parsons, P. A. (1974). Male mating speed as a component of fitness in Drosophila. Behav. Genet.4:395-404.

    Google Scholar 

  • Parsons, P. A. (1980a). Adaptive strategies in natural populations of Drosophila: Ethanol tolerances, desiccation resistance, and development times in climatically optimal and extreme environments. Theor, Appl. Genet.57:257-266.

    Google Scholar 

  • Parsons, P. A. (1980b). Isofemale strains and evolutionary strategies in natural populations. Evol. Biot.13:175-217.

    Google Scholar 

  • Parsons, P. A. (1988). Behavior, stress and variability. Behav. Genet. 18:293-308.

    Google Scholar 

  • Parsons, P. A. (1990). Fluctuating asymmetry: An epigeneric measure of stress. Biol. Rev.65:131-145.

    Google Scholar 

  • Parsons, P. A. (1993). Evolutionary adaptation and stress: Energy budgets and habitats preferred. Behav. Genet.23: 231-238.

    Google Scholar 

  • Parsons, P. A. (1994). Habitats, stress and evolutionary rates. J. Evol. Biol.7:387-397.

    Google Scholar 

  • Parsons, P. A. (1995a). Stress and limits to adaptation: Sexual ornaments. J. Evol. Biol.8:455-461.

    Google Scholar 

  • Parsons, P. A, (1995b). Inherited stress resistance and longevity: A stress theory of ageing. Heredity75:216-221.

    Google Scholar 

  • Parsons, P. A. (1996a). Stress, resources, energy balances and evolutionary change. Evol. Biol.29:39-72.

    Google Scholar 

  • Parsons, P. A. (1996b). Competition versus abiotic factors in variably stressful environments: Evolutionary implications. Oikos75:129-132.

    Google Scholar 

  • Parsons, P. A., and Kaul, D. (1966). Mating speed and duration of copulation in Drosophila melanogaxter. Heredity21: 219-225.

    Google Scholar 

  • Petrie, M. (1994). Improved growth and survival of offspring of peacocks with more elaborate trains. Nature371:598-599.

    Google Scholar 

  • Polak, M. (1994). Parasites increase fluctuating asymmetry of male Drosophila nigrospiracula: Implications for sexual selection. In Markow, T. A. (ed.), Developmental Instability: its Origins and Evolutionary Implications, Kluwer, Dordrecht, pp. 257-267.

    Google Scholar 

  • Prout, T. (1971). The relation between fitness components and population prediction in Drosophila. Genetics68:127-167.

    Google Scholar 

  • Riddoch, B. J. (1993). The adaptive significance of electrophoretic mobility in phosphoglucose isomerase (PGI). Biol. J. Linn. Soc.50:1-17.

    Google Scholar 

  • Rolan-Alvarez, E., Zapata, C., and Alvarez, G. (1995). Multilocus heterozygosity and sexual selection in a natural population of the marine snail Littorina mariae (Gastropoda: Prosobranchia). Heredity75:17-25.

    Google Scholar 

  • Scribncr, K. T., Smith, M. H., and Johns, P. E. (1989). Environmental and genetic components of antler growth in white-tailed deer. J. Mamm.70:284-291.

    Google Scholar 

  • Sohal, R. S., and Allen, R. G. (1990). Oxidative stress as a causal factor in differentiation and aging: A unifying hypothesis. Exp. Geront.25:499-522.

    Google Scholar 

  • Thomhill, R. (1992). Fluctuating asymmetry and the mating system of the Japanese scorpionfly, Panorpa japonica. Anim. Behav. 44:867-879.

    Google Scholar 

  • Thomhill, R., and Gangestad, S. W. (1993). Human facial beauty: Averageness, symmetry and parasite resistance. Hum. Nature4:237-269.

    Google Scholar 

  • Trivers, R. L. (1972). Parental investment and sexual selection. In Campbell, B. (ed.), Sexual Selection and the Descent of Man, Aldine, Chicago, pp. 136-179.

    Google Scholar 

  • Wedekind, C. (1994). Handicaps not obligatory in sexual selection for resistance genes. J. Theor. Biol.170:57-62.

    Google Scholar 

  • Weiner, J. (1992). Physiological limits to sustainable energy budgets in birds and mammals: Ecological implications. Trends. Ecol. Evol.7:384-389.

    Google Scholar 

  • White, T. C. R. (1993). The Inadequate Environment: Nitrogen and the Abundance of Animals, Springer-Verlag, Berlin

    Google Scholar 

  • Zotin, A. 1. (1990). Thermodynamic Bases of Biological Processes: Physiological Reactions and Adaptations, Walter de Gruyter, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parsons, P.A. Success in Mating: A Coordinated Approach to Fitness Through Genotypes Incorporating Genes for Stress Resistance and Heterozygous Advantage Under Stress. Behav Genet 27, 75–81 (1997). https://doi.org/10.1023/A:1025619510292

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025619510292

Navigation