Skip to main content
Log in

Magnetic Stimulation Can Modulate Seizures in Epileptic Patients

  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Objective: The aim of this study is to investigate the influence of external magnetic stimulation (EMS) in epileptic patients using magnetoencephalographic (MEG) measurements and non-linear analytic techniques. Methods: The examined group consisted of 15 men aged 19-56 years (mean: 39.5±11.3) and 15 women aged 15-53 years (mean: 36.7±11.4 ). For each one the magnetic activity was recorded from 32 points for each temporal lobe. External magnetic stimulation (EMS) with proper field characteristics (intensity: 1-7.5 pT, frequency: the α-rhythm of the patient (8-13 Hz)) was applied in the frontal, occipital and temporal lobes for 2 to 6 minutes and the emitted brain magnetic activity was recorded again. In order to investigate if there is any alteration in the MEG complexity underlying the neural dynamics characterizing the pathologic brain before and after the EMS, chaotic analysis approach was applied for the estimation of the dimensional analysis of the existing strange attractors. Results: The application of EMS resulted in rapid attenuation of the MEG activity of epileptic patients. The obtained results of the dimensionality calculation provide a shift from lower to higher dimensional values. Such a shift is an indication that we are dealing with a chaotic system similar with the one characterizing normal subjects. Conclusions: The increased values of the dimensional complexity and the lower activity of the MEG after the application of EMS strongly supports the beneficial effects of EMS in epileptic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldegunde, M., Miquez I. and Veira, J. Effects of pinealectomy on regional brain serotonin metabolism. Int. J. Neurosci., 1985, 26: 9–13.

    Google Scholar 

  • Anninos, P.A., Anogianakis, G., Lehnertz, K., Pantev C. and Hoke, M. Biomagnetic measurements using SQUID. Int. J. Neurosci., 1987, 37: 149–168.

    Google Scholar 

  • Anninos, P.A. and Tsagas, N. Localization and cure of epileptic foci with the use of MEG measurements. Int. J. Neurosci., 1989, 46: 235–242.

    Google Scholar 

  • Anninos, P.A., Tsagas, N., Sandyk, R. and Derpapas, K. Magnetic stimulation in the treatment of partial seizures. Int. J. Neurosci., 1991, 60: 141–171.

    Google Scholar 

  • Anninos, P.A. Electromagnetic fields generated from neuronal activity TIT. J. Life Sci., 1973, 3: 15–18.

    Google Scholar 

  • Anninos, P.A., Tsagas, N. and Adamopoulos, A. A brain model theory for epilepsy and the mechanism of treatment with experimental verification using SQUID measurements. In: R.M. Cotterill (Ed.), Models of Brain Function. New York Cambridge University Press, 1989: 405–421.

    Google Scholar 

  • Anninos, P.A., Tsagas, N., Jacobson J.I. and Kotini, A. The biological effects of magnetic stimulation in epileptic patients. Panminerva Med., 1999, 41: 207–215.

    Google Scholar 

  • Anninos, P.A. and Tsagas, N. Electronic apparatus for treating epileptic individuals, US patent number 5,453,072, Sept 26, 1995.

  • Baloyantz, A. and Destexhe, A.Lowdimensional chaos in an instance of epilepsy. Proc. Natl. Acad. Sci., USA, 1986, 83: 3513–3517.

    Google Scholar 

  • Cantello, R., Civardi, C., Cavalli, A., Varrasi, C., Tarletti, R., Monaco F. and Migliaretti, G. Cortical excitability in cryptogenic localization-related epilepsy interictal transcranial magnetic stimulation studies. Epilepsia, 2000, 41: 694–704.

    Google Scholar 

  • Cincotta, M., Borgheresi, A., Lori, S., Fabbri, M. and Zaccara, G. Interictal inhibitory mechanisms in patients with cryptogenic motor cortex epilepsy a study of the silent period following trancranial magnetic stimulation. Electroencephalogr. Clin. Neurophysiol., 1998, 107: 1–7.

    Google Scholar 

  • Cohen, D., Cuffin, N., Yonokuchi, K., Maniewski, R., Purcell, C., Cosgrove, G.R., Ives, J., Kennedy, J.G. and Schomer, D.L. MEG versus EEG localization test using implanted sources in the human brain. Ann. Neurol., 1990, 28: 811–817.

    Google Scholar 

  • Dobson, J., St. Pierre, T., Wieser, H.G. and Fuller, M. Changes in paroxysmal brainwave patterns of epileptics by weak-field magnetic stimulation, Bioelectromagnetics, 2000, 21: 94–99.

    Google Scholar 

  • Eckmann, J.P. and Ruelle, D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys., 1985, 57:6 17–656.

    Google Scholar 

  • Elger, C.E., Hoke, M., Lehnertz, K., Pantev, C., Lutkenhoner, B., Anninos, P.A. and Anogianakis, G. Mapping of MEG amplitude spectra its significance for the diagnosis of focal epilepsy. In: K. Maurer (Ed.), Topographic brain mapping of EEG and evoked potentials, Berlin Springer-Verlag, 1989: 565–570.

    Google Scholar 

  • Elger, C.E., Widman, G., Andrzejak, R., Arnhold, J., David, P. and Lehnertz, K. Nonlinear EEG analysis and its potential role in epileptology. Epilepsia, 2000, 41Suppl 3: 34–38.

    Google Scholar 

  • Grassberger, P. and Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett., 1983a, 50: 346–349.

    Google Scholar 

  • Grassberger, P. and Procaccia, I. Measuring the strangeness of strange attractors. Physica D, 1983b, 9: 189–208.

    Google Scholar 

  • Hayashi, H. and Ishizuka, S. Chaotic responses of the hippocampal CA3 region to a mossy fiber stimulation in vitro. Brain Res., 1995, 686: 194–206.

    Google Scholar 

  • Jasper, H.H. The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol., 1958, 10: 367–380.

    Google Scholar 

  • Jennum, P. Transcranial magnetic stimulation and epilepsy. Electroencephalogr. Clin. Neurophysiol. Suppl., 1999, 51: 212–220.

    Google Scholar 

  • Kastrup, O., Leonhardt, G., Kurthen, M. and Hufnagel, A. Cortical motor reorganization following early brain damage and hemispherectomy demonstrated by transcranial magnetic stimulation. Clin. Neurophysiol., 2000, 111: 1346–1352.

    Google Scholar 

  • Lehnertz, K. Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy-an overview. Int. J. Psychophysiol., 1999 Oct, 34(1): 45–52.

    Google Scholar 

  • Lissoni, P., Esposti, D., Esposti, G., Mauri, R., Resentini, M. and Morabito, F. A clinical study on the relationship between the pineal gland and the opioid system. J. Neural Trans., 1986, 65: 63–73.

    Google Scholar 

  • Morrell, F. Some characteristics of stimulus-provoked alpha activity. Electroencephalogr. Clin. Neurophysiol., 1966, 21: 552–561.

    Google Scholar 

  • Ossenkopp, K.P. and Cain, D.P. Inhibitory effects of acute exposure to low intensity 60 Hz magnetic fields on electrically kindled seizures in rats. Brain Res., 1988, 442: 255–260.

    Google Scholar 

  • Rose, D.F., Smith, P.D. and Sato, S. Magnetoencephalography and epilepsy research. Science, 1987, 238: 329–335.

    Google Scholar 

  • Schulze-Bonhage, A., Scheufler, K., Zenter, J. and Elger, C.E. Safety of single and repetitive focal transcranial magnetic stimuli as assessed by intracranial EEG recordings in patients with partial epilepsy. J. Neurol., 1999, 246: 914–919.

    Google Scholar 

  • Steinhoff, B.J., Stodieck, S.R., Zivcec, Z., Schreiner, R., von Maffei, C., Plendl, H. and Paulus, W. Transcranial magnetic stimulation (TMS) of the brain in patients with mesiotemporal epileptic foci. Clin. Electroencephalogr., 1993, 24: 1–5.

    Google Scholar 

  • Sutherling, W.W., Crandall, P.H., Cahan, L.D. and Barth, D.S. The magnetic field of epileptic spikes agrees with intracranial localizations in complex partial epilepsy. Neurology, 1988, 38: 778–786.

    Google Scholar 

  • Sutherling, W.W., Crandall, P.H., Engel, J., Darcey, T.M., Cahan, L.D. and Barth, D.S. The magnetic field of complex partial seizures agrees with intracranial localizations. Ann. Neurol., 1987, 21: 548–558.

    Google Scholar 

  • Tergau, F., Naumann, U., Paulus W. and Steinhoff, B.J. Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy (letter). Lancet 1999, 353: 2209.

    Google Scholar 

  • Theiler, J. and Rapp, P.E. Re-examination of the evidence for low-dimensional nonlinear structure in the human electroencephalogram. Electroenceph. Clin. Neurophysiol., 1996, 98: 213.

    Google Scholar 

  • Wassermann, E.M. Risk and safety of repetitive transcranial magnetic stimulation report and suggested guidelines from the international workshop on the safety of repetitive transcranial magnetic stimulation. Electroencephalogr. Clin. Neurophysiol., 1998, 108: 1–16.

    Google Scholar 

  • Ziemann, U., Steinhoff, B.J., Tergau, F. and Paulus, W. Transcranial magnetic stimulation: its current role in epilepsy research. Epilepsy Res., 1998, 30: 11–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anninos, P., Kotini, A., Adamopoulos, A. et al. Magnetic Stimulation Can Modulate Seizures in Epileptic Patients. Brain Topogr 16, 57–64 (2003). https://doi.org/10.1023/A:1025610516767

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025610516767

Navigation