Skip to main content
Log in

High‐Temperature Deposition of Carbon Films

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

A mathematical model of growth of a carbon film in high‐temperature deposition has been constructed in the approximation of the Stefan problem. The influence of different factors on the maximum thickness of the film has been analyzed. It has been shown that the porosity of the film is a factor of fundamental importance which determines the dynamics of its growth in terms of the effective thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Caldirola and H. Knopfel (eds.), Physics of High Energy Density[Russian translation], Moscow (1974).

  2. J. Winter, in: W. Hofer and J. Roth (eds.), Physical Processes of the Interaction of Fusion Plasmas with Solids, Academic Press, San Diego (1996).

    Google Scholar 

  3. H. Wuerz, S. Pestchanyi, B. Bazylev, et al., Fusion Sci. Technol., 40, 196-246 (2001).

    Google Scholar 

  4. V. Ronde, H. Maier, K. Krieger, R. Neu, and J. Perchermaier, J. Nucl. Mater., 290-293, 317-320 (2001).

    Article  Google Scholar 

  5. C. R. Phipps (ed.), High-Power Laser Ablation, 2000. Proc. SPIE., Vols. 3885 and 4065, SPIE, Bellingham, Washington.

  6. O. R. Monteiro, Ann. Rev. Mater. Res., 31, 111-137 (2001).

    Article  Google Scholar 

  7. N. V. Pavlyukevich, G. E. Gorelik, V. V. Levdansky, V. G. Leitsina, and G. I. Rudin, Physical Kinetics and Transfer Processes in Phase Transitions, Begell House, New York (1995).

    Google Scholar 

  8. G. S. Kukharev, A. N. Rogozhnikov, S. P. Fisenko, and S. I. Shabunya, J. Eng. Phys. Thermophys., 65, No. 2, 229-234 (1993).

    Google Scholar 

  9. S. A. Kukushkin and V. V. Slezov, Disperse Systems on the Surface of Solids. Mechanisms of Formation of Thin Films[in Russian], St. Petersburg (1996).

  10. S. A. Kukushkin and V. V. Slyozov, Progr. Surf. Sci., 51, 1-107 (1995).

    Article  Google Scholar 

  11. D. H. Lee, A. Misra, K. C. Walter, and M. Nastasi, Phys. Rev. B, 59, 12283-12295 (1999).

    Article  Google Scholar 

  12. M. P. Siegal, J. C. Barbour, P. N. Provencio, D. R. Tallant, and T. A. Friedmann, Appl. Phys. Lett., 73, 759-763 (1998).

    Article  Google Scholar 

  13. Encyclopedia of Materials(http://ww3.elsevier.nl/mrwclus/15/142/26/index.htt)

  14. F. Romm, Adv. Colloid Interface Sci., 99, 1-11 (2002).

    Article  Google Scholar 

  15. Y. Yuge, J. Statist. Phys., 16, 339-348 (1977).

    Google Scholar 

  16. P. Jensen, Rev. Mod. Phys., 71, No. 5, 1695-1734 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisenko, S.P., Bazylev, B.N. & Wuerz, H. High‐Temperature Deposition of Carbon Films. Journal of Engineering Physics and Thermophysics 76, 743–747 (2003). https://doi.org/10.1023/A:1025604901031

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025604901031

Keywords

Navigation