Skip to main content
Log in

Optimal Basis from Empirical Orthogonal Functions and Wavelet Analysis for Data Assimilation: Optimal Basis WADAi

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Wavelet Analysis provides a new orthogonal basis set which is localized in both physical space and Fourier transform space. Empirical Orthogonal Functions (EOFs), on the other hand, provide a global representation of data sets. Here we investigate the various ways in which one can combine these basis sets for optimal representation of data. EOFs represent the global large scale information and wavelet analysis are used to supplement this large scale information with local fine scale information. Here we begin to explore the application of these two basis sets for outputs from an Ocean General Circulation Model and we explore various applications, including data assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai, K. and L. Jameson (2001): Fundamental Applications of Wavelets for Earth Observation Satellite Image Analysis. Morikita Shuppan (in Japanese).

  • Blumberg, A. F. and G. L. Mellor (1983): Diagnostic and prognostic numerical circulation studies of the South Atlantic Bight. J. Geophys. Res., 88, 4579–4592.

    Google Scholar 

  • Daubechies, I. (1988): Orthaaaonormal basis of compactly supported wavelets. Comm. Pure Appl. Math., 41, 909–996.

    Google Scholar 

  • Erlebacher, G., M. Y. Hussaini and L. Jameson (1996): Wavelets: Theory and Applications. Oxford.

  • Ezer, T.and G. L. Mellor (1994): Continuous assimilation of Geosat altimeter data into a three-dimensional primitive equation Gulf Stream model. J. Phys. Oceanogr., 24, 832–847.

    Article  Google Scholar 

  • Fu, L.-L.,E. J. Christensen, C. A. Yamarone, Jr., M. Lefebvre, Y. Menard, M. Dorrer and P. Escudier (1994): TOPEX/ POSEIDON mission overview. J. Geophys. Res., 99, C12, 24,369–24,381.

    Article  Google Scholar 

  • Fukumori, I. and P. Malanotte-Rizzoli (1995): An approximate Kalman filter for ocean data assimilation: An example with an idealized Gulf Stream. J. Geophys. Res., 100, 4, 6777–6793.

    Article  Google Scholar 

  • Fukumori, I., R. Raghunath, L. Fu and Y. Chao (1999): Assimilation of TOPEX/Poseidon altimeter data into a global ocean circulation model: How good are the results? J. Geophys. Res., 104, 11, 25,647–25,665.

    Article  Google Scholar 

  • Jameson, L. (1998): A wavelet-optimized, very high-order adaptive grid and order numerical method. SIAM J. Sci. Comput., 19, 1980–2013.

    Article  Google Scholar 

  • Jameson, L. and T. Waseda (2000): Error estimation using wavelet analysis for data assimilation: EEWADAi. J. Atmos. Oceanic Technol., 107, 9, 1235–1246.

    Article  Google Scholar 

  • Jameson, L., T. Waseda and H. Mitsudera (2002): Scale utilization and optimization from wavelet analysis for data assimilation: SUgOiWADAi. J. Atmos. Oceanic Technol., 19, 5, 747–758.

    Article  Google Scholar 

  • Luo, J. and L. Jameson (2002): A wavelet-based technique for identifying, labeling, and tracking of ocean eddies. J. Atmos. Oceanic Technol., 19, 3, 381–390.

    Google Scholar 

  • Malanotte-Rizzoli, P. and W. R. Holland (1986): Data constraints applied to models of the ocean general circulation, Part I: The steady case. J. Phys. Oceanogr., 16, 1665–1687.

    Article  Google Scholar 

  • Mellor, G. L. and T. Ezer (1991): A Gulf stream model and an altimetry assimilation scheme. J. Geophys. Res., 96, C5, 8779–8795.

    Article  Google Scholar 

  • Mitsudera, H., Y. Yoshikawa, B. Taguchi and H. Nakamura (1997): High-resolution Kuroshio/Oyashio system model: Preliminary results. JAMSTECR, 36, 147–155.

    Google Scholar 

  • Pham, D. T., J. Verron and M. C. Roubaud (1998): A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Sys., 16, 323–340.

    Article  Google Scholar 

  • Smith, N. and M. Lefebvre (1998): The Global Ocean Data Assimilation Experiment. Paper presented at the International Symposium “Monitoring the Oceans in the 2000s: An Integrated Approach” 15-17 October 1998, Biarritz, France.

  • Verron, J., L. Gourdeau, D. T. Pham, R. Murtugudde and A. J. Busalacchi (1999): An extended Kalman filter to assimilate satellite altimeter data into a nonlinear numerical model of the tropical Pacific Ocean: Method and validation. J. Geophys. Res., 104, C3, 5441–5458.

    Article  Google Scholar 

  • Wilson, S. (2000): Launching the ARGO armada. Oceanus, 42, 1, 17–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waseda, T., Jameson, L., Mitsudera, H. et al. Optimal Basis from Empirical Orthogonal Functions and Wavelet Analysis for Data Assimilation: Optimal Basis WADAi. Journal of Oceanography 59, 187–200 (2003). https://doi.org/10.1023/A:1025591221588

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025591221588

Navigation