Skip to main content
Log in

Antiprotease effect of anti-inflammatory lupeol esters

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Lupeol-3-palmitate (LP) and lupeol-3-linoleate (LL), two synthetic long chain fatty acid ester analogues of the plant-derived anti-inflammatory pentacyclic triterpenoid lupeol (L), were studied in vitro as potential inhibitors of serine protease activity. With respect to the natural protein substrate bovine serum albumin (BSA), lupeol palmitate and lupeol linoleate inhibited trypsin activity in a manner consistent with mixed inhibition (KIC values of 103 and 52 μM respectively; KIU values of 30 and 14 μM respectively). However, the lupeol esters showed no inhibitory effect on the catalytic activity of porcine pancreatic elastase (PPE) with respect to the synthetic tetrapeptide substrate succinyl-(alanyl)3-p-nitroanilide (SAAANA). The present paper shows the lupeol triterpenes to be selective protease inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kweifio-Okai G: Antiinflammatory activity of a Ghanaian antiarthritic herbal preparation: I. J Ethnopharmacol 33: 263-267, 1991

    Google Scholar 

  2. Kweifio-Okai G, Carroll AR: Antiarthritic effect of Alstonia boonei triterpenes. In: P. Gopalakrishnkone, C.K. Tan (eds). Recent Advances in Toxinology Research. VTRG Publishers, Singapore, 1992, pp 19-28

    Google Scholar 

  3. Kweifio-Okai G, Field B, Rumble BA, Macrides TA, De Munk F: Esterification improves the antiarthritic effectiveness of lupeol. Drug Dev Res 35: 137-141, 1995

    Google Scholar 

  4. Kweifio-Okai G, Macrides TA: Mechanisms for the antiarthritic effect of lupeol triterpenes. Can J Physiol Pharmacol 72: 272, 1994

    Google Scholar 

  5. Kweifio-Okai G, De Munk F, Macrides TA, Smith P, Rumble BA: Antiarthritic mechanisms of lupeol triterpenes. Drug Dev Res 36: 20-24, 1995

    Google Scholar 

  6. Hasmeda M, Kweifio-Okai G, Macrides TA, Poyla G: Selective inhibition of eukaryote protein kinases by anti-inflammatory triterpenoids. Planta Med 65: 14-18, 1999

    Google Scholar 

  7. Zvaifler NJ, Firestein GS: Pannus and pannocytes: Alternative models of joint destruction in rheumatoid arthritis. Arth Rheum 37: 783-789, 1994

    Google Scholar 

  8. Weiss SJ: Tissue destruction by neutrophils. N Engl J Med 320: 365-376, 1989

    Google Scholar 

  9. Mainardi CL: Biochemical mechanisms of articular destruction. Rheum Dis Clin Nth Am 13: 215-233, 1987

    Google Scholar 

  10. Kweifio-Okai G, De Munk F, Rumble BA, Macrides TA, Cropley M: Antiarthritic mechanisms of amyrin triterpenes. Res Commun Mol Pathol Pharmacol 85: 45-55, 1994

    Google Scholar 

  11. Chaudhari A, Chaturvedi AK, Parmar SS, Brumleve SJ: Antiproteolytic activity of amyrin acetate. Res Commun Chem Pathol Pharmacol 7: 205-208, 1974

    Google Scholar 

  12. Chaturvedi AK, Parmar SS, Nigam SK, Bhatnagar SC, Misra G, Sastry BVR: Anti-inflammatory and anticonvulsant properties of some natural plant triterpenoids. Pharmacol Res Commun 8: 199-210, 1976

    Google Scholar 

  13. Banerji R, Nigam SK: Anti-proteolytic activity of some triterpenoids. Int J Crude Drug Res 21: 93-95, 1983

    Google Scholar 

  14. Ying Q-L, Rinehart AR, Simon SR, Cheronis JC: Inhibition of human leukocyte elastase by ursolic acid: Evidence for a binding site for pentacyclic triterpenes. Biochem J 277: 521-526, 1991

    Google Scholar 

  15. Rajic A, Kweifio-Okai G, Macrides TA, Sandeman RM, Chandler DS, Poyla GM: Inhibition of serine proteases by anti-inflammatory triterpenes. Planta Med 66: 206-210, 2000

    Google Scholar 

  16. Facino RM, Carini M, Stefani R, Aldini G, Saibene L: Anti-elastase and anti-hyaluronidase activities of saponins and sapogenins from Hedera helix, Aesculus hippocastanum and Ruscus aculeatus: Features contributing to their efficacy in the treatment of venous insufficiency. Arch Pharm 328: 720-724, 1995

    Google Scholar 

  17. Safayhi H, Rall B, Sailer ER, Ammon HP: Inhibition by boswellic acids of human leukocyte clastase. J Pharmacol Exp Ther 281: 460-463, 1997

    Google Scholar 

  18. Ashe BM, Zimmerman M: Specific inhibition of human granulocyte elastase by cis-unsaturated fatty acids and activation by the corresponding alcohols. Biochem Biophys Res Commun 75: 194-199, 1977

    Google Scholar 

  19. Cook L, Ternai B: Similar binding sites for unsaturated fatty acids and alkyl 2-pyrone inhibitors of human sputum elastase. Biol Chem Hoppe Seyler 369: 627-631, 1988

    Google Scholar 

  20. Markwell MA, Haas SM, Bieber LL, Tolbert NE: A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87: 206-210, 1978

    Google Scholar 

  21. Beith J, Spiess B, Wermouth CG: The synthesis and analytical use of a highly sensitive and convenient substrate of elastase. Biochem Med 11: 350-357, 1974

    Google Scholar 

  22. Geiger R: Elastases. In: H.U. Bergmeyer (ed). Methods of Enzymatic Analysis. Verlag Chemie GmbH, Germany, 1983, pp 170-184

    Google Scholar 

  23. Steiner RF, Roth J, Robbins J: The binding of thyroxine by serum albumin as measured by fluorescence quenching. J Biol Chem 241: 560-567, 1966

    Google Scholar 

  24. Segel IH: Biochemical Calculations. John Wiley & Sons, New York, 1968, pp 366-396

    Google Scholar 

  25. Eisenthal R, Cornish-Bowden A: The direct linear plot: A new graphical procedure for estimating enzyme kinetic parameters. Biochem J 139: 715-720, 1974

    Google Scholar 

  26. Cornish-Bowden A, Wharton CW: Inhibition of enzyme activity. In: D. Rickwood (ed). Enzyme Kinetics. IRL Press, Oxford, 1988, pp 35-41

    Google Scholar 

  27. Morrisett JD, Pownall HJ, Gotto AM: Bovine serum albumin: Study of the fatty acid and steroid binding sites using spin-labelled lipids. J Biol Chem 250: 2478-2494, 1975

    Google Scholar 

  28. Nielsen AD, Borch K, Westh P: Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin. Biochim Biophys Acta 1479: 321-331, 2000

    Google Scholar 

  29. Guyton AC, Hall JE: Human Physiology and Mechanisms of Disease, 6th edn. WB Saunders Company, Philadelphia, 1997, p 135

    Google Scholar 

  30. Mitaine-Offer AC, Hornebeck W, Sauvain M, Zeches-Hanrot M: Triterpenes and phytosterols as human leucocyte elastase inhibitors. Planta Med 68: 930-932, 2002

    Google Scholar 

  31. Groutas WC, Abrams WR, Theodorakis MC, Kasper AM, Rude SA, Badger RC, Ocain TD, Miller KE, Moi MK, Brubaker MJ, Davis, KS, Zandler ME: Amino acid derived latent isocyanates: Irreversible inactivation of pancreatic elastase and human leukocyte elastase. J Med Chem 28: 204-209, 1985

    Google Scholar 

  32. Bode W, Meyer E Jr, Powers JC: Human leukocyte and porcine pancreatic elastase: X-ray crystal structures, mechanism, substrate specificity, and mechanism-based inhibitors. Biochemistry 28: 1951-1963, 1989

    Google Scholar 

  33. Geetha T, Varalakshmi P: Effect of lupeol and lupeol linoleate on lysosomal enzymes and collagen in adjuvant-induced arthritis in rats. Mol Cell Biochem. 201: 83-87, 1999

    Google Scholar 

  34. Latha RM, Lenin M, Rasool M, Varalakshmi P: A novel derivative pentacyclic triterpene and omega 3 fatty acid. Prostaglandins Leukot Essent Fatty Acids. 64: 81-85, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodges, L.D., Kweifio-Okai, G. & Macrides, T.A. Antiprotease effect of anti-inflammatory lupeol esters. Mol Cell Biochem 252, 97–101 (2003). https://doi.org/10.1023/A:1025569805468

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025569805468

Navigation