Journal of Paleolimnology

, Volume 30, Issue 2, pp 231–247 | Cite as

Late Holocene environmental changes inferred from diatoms in a lake on the western Taimyr Peninsula, northern Russia

  • Tamsin E. Laing
  • John P. Smol


Changes in the diatom assemblages preserved in a sediment core taken from a small lake located north of arctic treeline on the western Taimyr Peninsula, Russia, were examined in order to investigate late Holocene (i.e., ca 5000 cal yr BP to present) climatic and environmental changes within the region. Early diatom assemblages were dominated by benthic Fragilaria taxa and indicate a transitional phase in the lake history, most likely reflecting lake development and environmental change associated with treeline retreat to the south of the study site. Concurrent with pollen and macrofossil evidence of a vegetation shift to shrub tundra in the catchment basin at ca 4200 cal yr BP, an increase in cold-water taxa, followed by little change in diatom assemblages until ca 2800 cal yr BP, suggests that conditions were relatively cool and stable at this time. The last ∼2000 years of the Middendorf Lake record have been marked by fluctuating limnological conditions, characterized by striking successional shifts between Fragilaria pinnata and Aulacoseira distans var. humilis. Recent conditions in Middendorf Lake indicate an increase in diatom taxa previously rare in the record, possibly associated with twentieth-century climatic warming. The Middendorf Lake record indicates that significant limnological change may occur in the absence of catchment vegetation shifts, suggesting late-Holocene decoupling of aquatic and terrestrial responses to climatic and hydrological change. Our study results represent one of the few paleoecological records currently available from northern Russia, and highlight the need for further development of calibration data sets from this region.

Arctic Climate Diatoms Holocene Paleohydrology Paleolimnology Russia Siberia Taimyr Taymyr Treeline 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian R., Walz N., Hintze T., Hoeg S. and Rusche R. 1999. Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshwat. Biol. 41: 621-632.Google Scholar
  2. Andreev A.A., Nikolaev V.I., Boi'sheiyanov D.Y. and Petrov V.N. 1997. Pollen and isotope investigations of an ice core from Vavilov ice cap. October Revolution Island, Severnaya Zemlya archipelago, Russia. Geog. Phys. Quat. 51: 379-389.Google Scholar
  3. Andreev A.A. and Klimanov V.A. 2000. Quantitative Holocene climatic reconstruction from Arctic Russia. J. Paleolim. 24: 81-91.Google Scholar
  4. Andreev A.A., Siegert C., Klimanov V.A., Derevyagin A.Yu., Shilova G.N. and Melles M. 2002. Late Pleistocene and Holocene vegetation and climate on the Taymyr lowland, northern Siberia. Quat. Res. 57: 138-150.Google Scholar
  5. Arkhipov S.A. 1998. Stratigraphy and paleogeography of the Sartan glaciation in west Siberia. Quat. Internat. 45: 29-42.Google Scholar
  6. Barrie L.A., Gregor D., Hargrave B., Lake R., Muir D., Shearer R. et al. 1992. Arctic contaminants: sources, occurrence and pathways. Sci. Total Environ. 122: 1-74.Google Scholar
  7. Bigler C. and Hall R.I. 2002. Diatoms as indicators of climatic and limnological change in Swedish Lapland: a 100-lake calibration set and its validation for paleoecological reconstructions. J. Paleolim. 27: 97-115.Google Scholar
  8. Birks H.H. 1991. Holocene vegetational history and climatic change in west Spitsbergen-plant macrofossils from Skardtjørna, an Arctic lake. The Holocene 1: 209-218.Google Scholar
  9. Birks H.J.B. 1998. D.G. Frey and E.S. Deevey Review # 1: Numerical tools in palaeolimnology-progress, potentialities and problems. J. Paleolim. 20: 307-332.Google Scholar
  10. Birks H.J.B., Line J.M., Juggins S., Stevenson A.C. and ter Braak C.J.F. 1990. Diatoms and pH reconstruction. Philos. Trans. R. Soc. Lond. B 327: 263-278.Google Scholar
  11. Blais J.M., Duff K.E., Laing T.E. and Smol J.P. 1999. Regional contamination in lakes from the Noril'sk region in Siberia, Russia. Water Air Soil Pollut. 110: 389-404.Google Scholar
  12. Briffa K.R., Jones P.D., Schweingruber F.H., Shiyatov S.G. and Cook E.R. 1995. Unusual twentieth-century summer warmth in a 1000-year temperature record from Siberia. Nature 376: 156-159.Google Scholar
  13. Clayden S.L., Cwynar L.C. and MacDonald G.M. 1996. Stomate and pollen content of lake surface sediments from across the tree line on the Taimyr Peninsula. Can. J. Bot. 74: 1009-1015.Google Scholar
  14. Davydova N.D., Subetto D.A., Khomutova V.I. and Sapelko T.V. 2001. Late Pleistocene-Holocene paleolimnology of three north-western Russian lakes. J. Paleolim. 26: 37-51.Google Scholar
  15. Denys L. 1990. Fragilaria blooms in the Holocene of the western coastal plain of Belgium. In: Simola H. (ed.), Proceedings of the Tenth Diatom Symposium, Joensuu, Finland, 1988. Koeltz Scientific Books, Koenigstein, pp. 397-406.Google Scholar
  16. Douglas M.S.V. and Smol J.P. 1999. Freshwater diatoms as indicators of environmental change in the High Arctic. In: Stoermer E.F. and Smol J.P. (eds), Diatoms: Applications to the Environmental and Earth Sciences. Cambridge University Press, Cambridge, pp. 227-244.Google Scholar
  17. Douglas M.S.V., Smol J.P. and Blake W. Jr. 1994. Marked post-18th century environmental change in High-Arctic ecosystems. Science 266: 416-419.Google Scholar
  18. Duff K.E., Laing T.E., Smol J.P. and Lean D.R.S. 1999. Limnological characteristics of lakes located across the treeline zone in northern Siberia. Hydrobiologia 391: 205-22.Google Scholar
  19. Evans G.H. 1964. Two fossil diatoms from the lake deposits of the English Lake District. New Phytol. 63: 413-417.Google Scholar
  20. Fisher D.A., Koerner R.M. and Reeh N. 1995. Holocene climatic records from Agassiz ice cap, Ellesmere Island, NWT, Canada. The Holocene 5: 19-24.Google Scholar
  21. Florin M.-B. 1977. Late-glacial and pre-boreal vegetation in southern central Sweden. II. Pollen, spore, and diatom analyses. Striae 5: 3-60.Google Scholar
  22. Gibson C.E. 1984. Sinking rates of planktonic diatoms in an unstratified lake: a comparison of field and laboratory observations. Freshwat. Biol. 14: 631-638.Google Scholar
  23. Grosswald M.G. 1980. Late Weichselian ice sheet of northern Eurasia. Quat. Res. 13: 1-32.Google Scholar
  24. Hahne J. and Melles M. 1997. Late-and post-glacial vegetation and climate history of the south-western Taymyr Peninsula, central Siberia, as revealed by pollen analysis of a core from Lake Lama. Vegetat. Hist. Archaeobot. 6: 1-8.Google Scholar
  25. Harrison S.P., Prentice I.C. and Bartlein P.J. 1992. Influence of insolation and glaciation on atmospheric circulation in the North Atlantic sector: implications of general circulation model experiments for the late Quaternary climatology of Europe. Quat. Sci. Rev. 11: 283-299.Google Scholar
  26. Harrison S.P., Yu G. and Tarasov P.E. 1996. Late Quaternary lake-level record from Northern Eurasia. Quat. Res. 45: 138-159.Google Scholar
  27. Haworth E.Y. 1969. The diatoms of a sediment core from Blea Tarn, Langdale. J. Ecol. 57: 429-439.Google Scholar
  28. Jacoby G.C., Lovelius N.V., Shumilov O.I., Raspopov O.M., Karbainov J.M. and Frank D.C. 2000. Long-term temperature trends and tree growth in the Taymir region of northern Siberia. Quat. Res. 53: 312-318.Google Scholar
  29. Kaakinen A. and Eronen M. 2000. Holocene pollen stratigraphy indicating climatic and tree-line changes derived from a peat section at Ortino, in the Pechora lowland, northern Russia. The Holocene 10: 611-620.Google Scholar
  30. Kaplan M.R., Wolfe A.P. and Miller G.H. 2002. Holocene environmental variability in southern Greenland inferred from lake sediments. Quat. Res. 58: 149-159.Google Scholar
  31. Kattenberg A., Giorgi F., Grassl H., Meehl G.A., Mitchell J.F.B., Stouffer R.J., Tokioka T., Weaver A.J. and Wigley T.M.L. 1996. Climate models-projections of future climate. In: Houghton J.T., Meira Filho L.G., Callander B.A., Harris N., Kattenberg A. and Maskell K. (eds), Climate Change 1995: The Science of Climate Change. Contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 285-357.Google Scholar
  32. Keskitalo J. and Eloranta P. (eds) 1999. Limnology of Humic Waters. Backhuys Publishers, Leiden, 284.Google Scholar
  33. Khotinskiy N.A. 1984. Holocene vegetation history. In: Velichko A.A., Wright H.E. Jr. and Barnosky C.W. (eds), Late Quaternary Environments of the Soviet Union. University of Minnesota Press, Minneapolis, pp. 179-200.Google Scholar
  34. Kienel U. 1999. LateWeichselian to Holocene diatom succession in a sediment core from Lama Lake, Siberia, and presumed ecological implications. In: Kassens H., Bauch H.A., Dmitrenko I.A., Eicken H., Hubberten H.-W., Melles M. et al. (eds), Land-Ocean Systems in the Siberian Arctic: Dynamics and History. Lecture Notes in Earth Science. Springer-Verlag, Berlin, pp. 377-405.Google Scholar
  35. Kienel U. and Kumke T. 2002. Combining ordination techniques and geostatistics to determine the patterns of diatom distributions at Lake Lama, Central Siberia. J. Paleolim. 28: 181-194.Google Scholar
  36. Kienel U., Siegert C. and Hahne J. 1999. Late Quaternary palaeoenvironmental reconstructions from a permafrost sequence (North Siberian Lowland, SE Taymyr Peninsula)-a multidisciplinary case study. Boreas 28: 181-193.Google Scholar
  37. Koç, N., Jansen E., Hald M. and Labeyrie L. 1996. Late glacial-Holocene sea surface temperatures and gradients between the North Atlantic and the Norwegian Sea: implications for the Nordic heat pump. In: Andrews J.T., Austin W.E.N., Bergsten H. and Jennings A.E. (eds), Late Quaternary Palaeoceanography of the North Atlantic Margins. Geological Society Special Publication No. 111, pp. 177-185.Google Scholar
  38. Koerner R.M. 1997. Some comments on climatic reconstructions from ice cores drilled in areas of high melt. J. Glaciol. 43: 90-97.Google Scholar
  39. Korhola A. and Tikkanen M. 1996. The early postglacial history of Lake Sirkkajärvi, southern Finland, with implications to the 'G stage' of the Baltic. Geograf. Annal. 78a: 235-245.Google Scholar
  40. Korhola A., Virkanen J., Tikkanen M. and Blom T. 1996. Fire-induced pH rise in a naturally acid hill-top lake, southern Finland: a palaeoecological survey. J. Ecol. 84: 257-265.Google Scholar
  41. Koshkarova V.L. 1995.Vegetation response to global and regional environmental change on the Taymyr Peninsula during the Holocene. Polar Geograph. Geol. 19: 145-151.Google Scholar
  42. Krammer K. and Lange-Bertalot H. 1986. Bacillariophyceae (Naviculaceae). In: Ettl H., Gerloff J., Heynig H. and Mollenhauer D. (eds), Su (Süßwasserflora von Mitteleuropa, (2(1)), Gustav Fischer Verlag, Stuttgart, pp. 1-876.Google Scholar
  43. Krammer K. and Lange-Bertalot H. 1988. Bacillariophyceae (Bacillariaceae, Epithemiaceae, Surirellaceae). In: Ettl H., Gerloff J., Heynig H. and Mollenhauer D. (eds), Sü ßwasserflora von Mitteleuropa, (2(2)), Gustav Fischer Verlag, Stuttgart, pp. 1-596.Google Scholar
  44. Krammer K. and Lange-Bertalot H. 1991a. Bacillariophyceae (Centrales, Fragilariaceae, Eunotiaceae). In: Ettl H., Gerloff J., Heynig H. and Mollenhauer D. (eds), Sü ßwasserflora von Mitteleuropa, (2(3)), Gustav Fischer Verlag, Stuttgart, pp. 1-576.Google Scholar
  45. Krammer K. and Lange-Bertalot H. 1991b. Bacillariophyceae (Achnantheaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis). In: Ettl H., Gartner G., Gerloff J., Heynig H. and Mollenhauer D. (eds), Sü ßwasserflora von Mitteleuropa, (2(4)), Gustav Fischer Verlag, Stuttgart, pp. 1-437.Google Scholar
  46. Krasovskaya T.M. 1987. Possible routes of transport of atmospheric pollution into the Arctic and patterns of accumulation in snow and ice. Polar Geograph. Geol. 11: 76-80.Google Scholar
  47. Kremenetski C.V., Sulerzhitsky L.D. and Hantemirov R. 1998. Holocene history of the northern range limits of some trees and shrubs in Russia. Arct. Alp. Res. 30: 317-333.Google Scholar
  48. Kunilov V. and Ye. 1994. Geology of the Noril'sk region: the history of the discovery, prospecting, exploration and mining of the Noril'sk deposits. In: Lightfoot P.C. and Naldrett A.J. (eds), Proceedings of the Sudbury-Noril'sk symposium. Special Volume 5, Ministry of Northern Development and Mines. Queen's Printer for Ontario, Toronto, pp. 203-216.Google Scholar
  49. Laing T.E. 1999. Diatoms as Indicators of Past Environmental and Climatic Changes in the Siberian Arctic. Unpublished PhD Thesis, Queen's University, Kingston, Ontario, Canada, 235 pp.Google Scholar
  50. Laing T.E. and Smol J.P. 2000. Factors influencing diatom distributions in circumpolar treeline lakes of northern Russia. J. Phycol. 36: 1035-1048.Google Scholar
  51. Laing T.E., Rühland K.M. and Smol J.P. 1999. Past environmental and climatic changes related to tree-line shifts inferred from fossil diatoms from a lake near the Lena River Delta, Siberia. The Holocene 9: 547-557.Google Scholar
  52. Laird K.R., Fritz S.C. and Cumming B.F. 1998. A diatom-based reconstruction of drought intensity, duration, and frequency from Moon Lake, North Dakota: a sub-decadal record of the last 2300 years. J. Paleolim. 19: 161-179.Google Scholar
  53. Larsen E., Sejrup H.P., Johnsen S.I. and Knudsen K.L. 1995. Do Greenland ice cores reflect NW European interglacial climate variations? Quat. Res. 42: 125-132.Google Scholar
  54. Lotter A.F., Pienitz R. and Schmidt R. 1999. Diatoms as indicators of environmental change near arctic and alpine treeline. In: Stoermer E.F. and Smol J.P. (eds), Diatoms: Applications to the Environmental and Earth Sciences. Cambridge University Press, Cambridge, pp. 205-226.Google Scholar
  55. Lydolph P.E. 1977. Climates of the Soviet Union. In: World Survey of Climatology Vol. vol. 7. Elsevier Scientific Publishing Company, Amsterdam, pp. 443.Google Scholar
  56. Lubinski D.J., Forman S.L. and Miller G.H. 1999. Holocene glacier and climate fluctuations on Franz Josef Land, Arctic Russia, 80° N. Quat. Sci. Rev. 18: 85-108.Google Scholar
  57. MacDonald G.M., Case R.A. and Szeicz J.M. 1998. A 538-year record of climate and treeline dynamics from the lower Lena River region of northern Siberia, Russia. Arct. Alp. Res. 30: 334-339.Google Scholar
  58. MacDonald G.M., Velichko A.A., Kremenetski C.V., Borisova O.K., Goleva A.A., Andreev A.A. et al. 2000. Holocene treeline history and climate change across northern Eurasia. Quat. Res. 53: 302-311.Google Scholar
  59. Moser K.A., Smol J.P., MacDonald G.M. and Larsen C.P.S.J. 2002. 19th century eutrophication of a remote boreal lake: a consequence of climate warming? J. Paleolim. 28: 269-281.Google Scholar
  60. Moser K.A., Korhola A., Weckstrom J., Blom T., Pienitz R., Smol JP. et al. 2000. Paleohydrology inferred from diatoms in northern latitude regions. J. Paleolim. 24: 93-107.Google Scholar
  61. O'Brien S.R., Mayewski P.A., Meeker L.D., Meese D.A., Twickler M.S. and Whitlow S.I. 1995. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270: 1962-1995.Google Scholar
  62. Overpeck J.T., Webb T. III and Prentice I.C. 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quat. Res. 23: 87-108.Google Scholar
  63. Overpeck J., Hughen K., Hardy D., Bradley R., Case R., Douglas M. et al. 1997. Arctic environmental change of the last four centuries. Science 278: 1251-1256.Google Scholar
  64. Peteet D., Andreev A., Bardeen W. and Mistretta F. 1998. Long-term Arctic peatland dynamics, vegetation and climate history of the Pur-Taz region, Western Siberia. Boreas 27: 115-126.Google Scholar
  65. Pienitz R. 1993. Paleoclimate Proxy Data Inferred from Freshwater Diatoms from the Yukon and the Northwest Territories. Unpublished PhD Thesis, Queen's University, Kingston, Ontario, Canada, 218 pp.Google Scholar
  66. Pienitz R. and Smol J.P. 1993. Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest-tundra ecotone near Yellowknife, Northwest Territories, Canada. Hydrobiology 269: 391-404.Google Scholar
  67. Pienitz R., Smol J.P. and Birks H.J.B. 1995. Assessment of fresh-water diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada. J. Paleolim. 13: 21-49.Google Scholar
  68. Pienitz R., Smol J.P. and MacDonald G.M. 1999. Paleolimnological reconstruction of Holocene climatic trends from two boreal treeline lakes, Northwest Territories, Canada. Arct. Alp. Res. 31: 82-93.Google Scholar
  69. Ponader K., Pienitz R., Vincent W. and Gajewski K. 2002. Limnological conditions in a subarctic lake (northern Quebec, Canada) during the late-Holocene: Analyses based on fossil diatoms. J. Paleolim. 27: 353-366.Google Scholar
  70. Porinchu D.F. and Cwynar L.C. 2002. Late-Quaternary history of midge communities and climate from a tundra site near the lower Lena River, Northeast Siberia. J. Paleolim. 27: 59-69.Google Scholar
  71. Ritchie J.C. 1995. Current trends in studies of long-term plant community dynamics. New Phytol. 130: 469-494.Google Scholar
  72. Round F.E., Crawford R.M. and Mann D.G. 1990. The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge, 747.Google Scholar
  73. Rouse W.R., Douglas M.S.V., Hecky R.E., Hershey A.E., Kling G.W., Lesack L. et al. 1997. Effects of climate change on the freshwaters of arctic and subarctic North America. Hydrolog. Proc. 11: 873-902.Google Scholar
  74. Rühland K. 1996. Assessing the Use of Diatom Assemblages as Paleoenvironmental Proxies in the Slave and Bear Geological Provinces, NWT, Canada. Unpublished MSc Thesis, Queen's University, Kingston, Ontario, Canada, 143 pp.Google Scholar
  75. Seppä H. and Weckstrom J. 1999. Holocene vegetational and limnological changes in the Fennoscandian tree-line area as documented by pollen and diatom records from Lake Tsuolbmajavri, Finland. Écoscience 6: 621-635.Google Scholar
  76. Serreze M.C., Walsh J.E., Chapin F.S. III, Osterkamp T., Dyurgerov M., Romanovsky V. et al. 2000. Observational evidence of recent change in the northern high-latitude environment. Climat. Change 46: 159-207.Google Scholar
  77. Smol J.P. 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verh. Int. Ver. Limnol. 23: 837-844.Google Scholar
  78. Smol J.P. and Cumming B.F. 2000. Tracking long-term changes in climate using algal indicators in lake sediments. J. Phycol. 36: 986-1011.Google Scholar
  79. Smol J.P., Brown S.R. and McIntosh H.J. 1984. A hypothetical relationship between differential algal sedimentation and diatom succession. Verh. Int. Ver. Limnol. 22: 1361-1365.Google Scholar
  80. Snyder J.A., MacDonald G.M., Forman S.L., Tarasov G.A. and Mode W.N. 2000. Postglacial climate and vegetation history, north-central Kola Peninsula, Russia: pollen and diatom records from Lake Yarnyshnoe-3. Boreas 29: 261-271.Google Scholar
  81. Stevenson A.C., Juggins S., Birks H.J.B., Anderson D.S., Anderson N.J., Battarbee R.W. et al. 1991. The Surface Waters Acidification Project Palaeolimnology Programme: Modern Diatom/ Lake-Water Chemistry Data-Set. ENSIS Ltd, London, 86 pp.Google Scholar
  82. Stuiver M. and Reimer P.J. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35: 215-230.Google Scholar
  83. Stuiver M., Reimer P.J., Bard E., Beck J.W., Burr G.S., Hughen K.A. et al. 1998. INTCAL98 radiocarbon age calibration, 24000-0 cal BP. Radiocarbon 40: 1041-1083.Google Scholar
  84. ter Braak C.J.F. and Šmilauer P. 1998. CANOCO reference manual_ and user's guide to Canoco forWindows: Software for Canonical Community Ordination (version 4). Microcomputer Power Ithaca, 352 pp.Google Scholar
  85. Vaganov E.A., Panyushkina I.P. and Naurzbaev M.M. 1997. Reconstruction of summer air temperature in the eastern Taimyr over the last 840 years. Russ. J. Ecol. 28: 355-359.Google Scholar
  86. Vaykmyae R.A. and Punning Y.M.K. 1984. Isotope and geochemical investigation on the Vavilov Glacier dome, Severnaya Zemlya. Polar Geog. Geol. 8: 73-79.Google Scholar
  87. Velichko A.A., Andreev A.A. and Klimanov V.A. 1997aa. Climate and vegetation dynamics in the tundra and forest zone during the Late Glacial and Holocene. Quat. Int. 41: 71-96.Google Scholar
  88. Velichko A.A., Kononov Yu.M. and Faustova M.A. 1997bb. The last glaciation of Earth: size and volume of ice-sheets. Quat. Int. 41: 43-51.Google Scholar
  89. Weckström J., Korhola A. and Blom T. 1997. The relationship between diatoms and water temperature in thirty subarctic Fennoscandian lakes. Arct. Alp. Res. 29: 75-92.Google Scholar
  90. Wilson S.E., Cumming B.F. and Smol J.P. 1996. Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219-lake data set from western North America. Can. J. Fish. Aquat. Sci. 53: 1580-1594.Google Scholar
  91. Wolfe A.P. 1996. Spatial patterns of modern diatom distribution and multiple paleolimnological records from a small arctic lake on Baffin Island, Arctic Canada. Can. J. Bot. 74: 435-449.Google Scholar
  92. Wolfe A.P. and Hartling J.W. 1996. The late Quaternary development of three ancient tarns on southwestern Cumberland Peninsula, Baffin Island, Arctic Canada: paleolimnological evidence from diatoms and sediment chemistry. J. Paleolim. 15: 1-18.Google Scholar
  93. Wolfe B.B., Edwards T.W.D. and Aravena R. 1999. Changes in carbon and nitrogen cycling during tree-line retreat recorded in the isotopic content of lacustrine organic matter, western Taimyr Peninsula, Russia. The Holocene 9: 215-222.Google Scholar
  94. Wolfe B.B., Edwards T.W.D., Aravena R., Forman S.L., Warner B.G., Velichko A.A. et al. 2000. Holocene paleohydrology and paleoclimate at treeline, North-Central Russia, inferred from oxygen isotope records in lake sediment cellulose. Quat. Res. 53: 319-329.Google Scholar
  95. Wolin J.A. and Duthie H.C. 1999. Diatoms as indicators of water level change in freshwater lakes. In: Stoermer E.F. and Smol J.P. (eds), Diatoms: Applications to the Environmental and Earth Sciences. Cambridge University Press, Cambridge, pp. 183-202.Google Scholar
  96. World Meteorological Organization (WMO), 1981. Climatic atlas of Asia I-Maps of mean temperature and precipitation. Voiekov Main Geophysical Observatory, Leningrad, USSR. Geneva: WMO, Unesco, Goscomgidromet USSR, UNEP.Google Scholar
  97. Wright H.E. Jr., Mann D.H. and Glaser P.H. 1984. Piston corers for peat and lake sediments. Ecology 65: 657-659.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Tamsin E. Laing
    • 1
  • John P. Smol
    • 1
  1. 1.Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of BiologyQueen's UniversityKingstonCanada
  2. 2.Centre d’Études Nordiques, Pavillon Abitibi-PriceUniversitéLavalCanada

Personalised recommendations