Skip to main content
Log in

A First Look at Estimating Body Size in Dentally Conservative Marsupials

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The relationship between body size and tooth size has been documented for recent primates and insectivores and resulting predictive equations used to estimate body size in fossil species. This relationship is an important one, as body size is related to a host of physiological and ecological factors. In this study, the relationship between body size and molar size in recent dentally conservative marsupials is examined and body size in Cretaceous marsupials is estimated. Body weight information and basic length, width, and area measurements were taken from the molars of individuals from 22 species of Didelphidae and Dasyuridae. Least squares regression analysis shows that, as in previous studies on eutherians, the first molar is generally the most highly correlated with body size. In fact, there is a strong relationship between body size and tooth size throughout the molar series, suggesting that a fairly accurate body size estimate could be obtained from molars other than the first molar. The inclusion of species that are morphologically divergent from the “average” morphotype may affect the analysis. Body mass estimated in Cretaceous marsupials indicates a range of sizes similar to that seen in Recent dentally primitive marsupials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anthony, M. R. L., and Kay, R. F. (1993). Tooth form and diet in ateline and alouattine primates: Reflections on the comparative method. Amer. J.Sci. 293-A: 356–382.

    Google Scholar 

  • Bloch, J. I., Rose, K. D., and Gingerich, P. D. (1998). New species of Batodonoides (Lipotyphla, Geolabididae) from the Early Eocene of Wyoming: Smallest known mammal? J. Mammal. 79: 804–827.

    Google Scholar 

  • Cifelli, R. L. (1994). Therian mammals of the Terlingua Local Fauna (Judithian), Aguja Formation, Big Bend of the Río Grande, Texas. Contrib. Geol., Univ. Wyoming 30: 117–136.

    Google Scholar 

  • Clemens, W. A. (1966). Fossil mammals of the type Lance Formation, Wyoming. Part II. Marsupialia. Univ. Calif. Publ. Geol. Sci. 62: 1–122.

    Google Scholar 

  • Clemens, W. A. (1979). Marsupialia. In: Mesozoic Mammals–The First Two-Thirds of Mammalian History, J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens, eds., pp. 192–220, University of California Press, Berkeley, CA.

    Google Scholar 

  • Clemens, W. A., Lillegraven, J. A., Lindsay, E. H., and Simpson, G. G. (1979). Where, when, and what–A survey of known Mesozoic mammal distribution. In: Mesozoic Mammals–The First Two-Thirds of Mammalian History, J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens, eds., pp. 7–58, University of California Press, Berkeley, CA.

    Google Scholar 

  • Crompton, A. W., and Hiiemae, K. (1970). Molar occlusion and mandibular movements during occlusion in the American opossum, Didelphis marsupialis, L. Zool. J. Linn. Soc. 49: 21–47.

    Google Scholar 

  • Crompton, A. W., and Kielan-Jaworowska, Z. (1978). Molar structure and occlusion in Cretaceous therian mammals. In: Studies in the Development, Function and Evolution of Teeth, P. M. Butler and K. A. Joysey, eds., pp. 249–287, Academic Press, London.

    Google Scholar 

  • Draper, N. R., and Smith, H. (1998). Applied Regression Analysis, Wiley, New York.

    Google Scholar 

  • Eisenberg, J. F. (1981). The Mammalian Radiations, The University of Chicago Press, Chicago.

    Google Scholar 

  • Eisenberg, J. F. (1990). The behavioral/ecological significance of body size in the Mammalia. In: Body Size in Mammalian Paleobiology, J. Damuth and B. J. MacFadden, eds., pp. 25–37, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Fleagle, J. G. (1985). Size and adaptation in primates. In: Size and Scaling in Primate Biology, W. L. Jungers, ed., pp. 1–19, Plenum Press, New York.

    Google Scholar 

  • Fox, R. C. (1979a). Mammals from the Upper Cretaceous Oldman Formation, Alberta. I. Alphadon Simpson (Marsupialia). Can. J. Earth Sci. 16: 91–102.

    Google Scholar 

  • Fox, R. C. (1979b). Mammals from the Upper Cretaceous Oldman Formation, Alberta. II. Pediomys Marsh (Marsupialia). Can. J. Earth Sci. 16: 103–113.

    Google Scholar 

  • Fox, R. C. (1981). Mammals from the Upper Cretaceous Oldman Formation, Alberta. V. Eodelphis Matthew, and the evolution of the Stagodontidae. Can. J. Earth Sci. 18: 350–365.

    Google Scholar 

  • Gingerich, P. D. (1974). Dental function in the Paleocene primate Plesiadapis. In: Prosimian Biology, R. D. Martin, G. A. Doyle, and A. C. Walker, eds., pp. 531–541, University of Pittsburgh Press, Pittsburgh.

    Google Scholar 

  • Gingerich, P. D., and Smith, B. H. (1984). Allometric scaling in the dentition of primates and insectivores. In: Size and Scaling in Primate Biology, W. L. Jungers, ed., pp. 257–272, Plenum Press, New York.

    Google Scholar 

  • Gingerich, P. D., Smith, B. H., and Rosenberg, K. (1982). Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. Amer. J. Phys. Anthropol. 58: 81–100.

    Google Scholar 

  • Hiiemae, K. M., and Crompton, A. W. (1971). A cinefluorographic study of feeding in the American opossum Didelphis marsupialis. In: Dental Morphology and Evolution, A. A. Dahlberg, ed., pp. 299–334, University of Chicago Press, Chicago.

    Google Scholar 

  • Hume, I. D. (1999). Marsupial Nutrition, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Janis, C. M. (1990). Correlation of cranial and dental variables with body size in ungulates and macropodids. In: Body Size in Mammalian Paleobiology, J. Damuth and B. J. MacFadden, eds., pp. 255–299, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Johanson, Z. (1996). Revision of the Late Cretaceous North American marsupial genus Alphadon. Palaeontographica Abteilung A 242: 127–184.

    Google Scholar 

  • Kay, R. F. (1973). Mastication, Molar Tooth Structure and Diet in Primates. PhD Dissertation, Yale University, New Haven.

    Google Scholar 

  • Kay, R. F. (1975). The functional adaptations of primate molar teeth. J. Phys. Anthropol. 43: 195–216.

    Google Scholar 

  • Kay, R. F. (1978). Molar structure and diet in extant Cercopithecidae. In: Studies in the Development, Function and Evolution of Teeth, P. M. Butler and K. A. Joysey, eds., pp. 309–339, Academic Press, London.

    Google Scholar 

  • Kay, R. F. (1984). On the use of anatomical features to infer foraging behavior in extinct primates. In: Adaptations for Foraging in Nonhuman Primates: Contributions to an Organismal Biology of Prosimians, Monkeys and Apes, P. S. Rodman and J. G. H. Cant, eds., pp. 21–53, Columbia University Press, New York.

    Google Scholar 

  • Kay, R. F., and Hylander, W. L. (1978). The dental structure of mammalian folivores with special reference to Primates and Phalangeroidea (Marsupialia). In: The Ecology of Arboreal Folivores, G. G. Montgomery, ed., pp. 173–191, Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • LaBarbera, M. (1986). The evolution and ecology of body size. In: Patterns and Processes in the History of Life, D. M. Raup and D. Jablonski, eds., pp. 69–98, Springer, Heidelberg.

    Google Scholar 

  • Lee, A. K., and Cockburn, A. (1985). Evolutionary Ecology of Marsupials, Cambridge University Press,Cambridge, England.

    Google Scholar 

  • Legendre, S. (1989). Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocéne) d'Europe occidentale: Structures, milieux et évolution. Münch. Geowissenschaftliche Abhandlungen 16: 1–110.

    Google Scholar 

  • Lillegraven, J. A. (1969). Latest Cretaceous mammals of upper part of Edmonton Formation of Alberta, Canada, and review of marsupial-placental dichotomy in mammalian evolution. Univ. Kansas Paleontol. Contrib. 50: 1–122.

    Google Scholar 

  • McNab, B. K. (1990). The physiological significance of body size. In: Body Size in Mammalian Palebiology, J. Damuth and B. J. MacFadden, eds., pp. 11–23, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Nowak, R. M. (1991). Walker's Mammals of the World, The Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Peters, R. H. (1983). The Ecological Implications of Body Size, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Reynolds, P. S. (2002). How big is a giant? The importance of method in estimating body size of extinct mammals. J. Mammal. 83: 321–332.

    Google Scholar 

  • Riggs, D. S., Guarnieri, J. A., and Addelman, S. (1978). Fitting straight lines when both variables are subject to error. Life Sci. 22: 1305–1360.

    Google Scholar 

  • Schmidt-Nielsen, K. (1984). Scaling: Why Is Animal Body Size So Important? Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Silva, M., and Downing, J. A. (1995). CRC Handbook of Mammalian Body Masses, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Smith, R. J. (1984). Determination of relative size: The “Criterion of Subtraction” problem in allometry. J. Theor. Biol. 108: 131–142.

    Google Scholar 

  • Smith, R. J. (1993). Logarithmic transformation bias in allometry. Amer. J. Phys. Anthropol. 90: 215–228.

    Google Scholar 

  • Storer, J. E. (1991). The mammals of the Gryde local fauna, Frenchman Formation (Maastrichtian: Lancian), Saskatchewan. J. Vertebr. Paleontol. 11: 350–369.

    Google Scholar 

  • Strahan, R. (ed.) (1995). Mammals of Australia, Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Strait, S. G. (1991). Dietary Reconstruction in Small-bodied Fossil Primates. PhD Dissertation, State University of New York, Stony Brook.

    Google Scholar 

  • Temerin, L. A., Wheatley, B. P., and Rodman, P. S. (1984). Body size and foraging in primates. In: Adaptations for Foraging in Nonhuman Primates, P. S. Rodman and J. G. H. Cant, eds., pp. 217–248, Columbia University Press, New York.

    Google Scholar 

  • Thewissen, J. G. M., and Gingerich, P. D. (1989). Skull and endocranial cast of Eoryctes melanus, a new palaeoryctid (Mammalia, Insectivora) from the early Eocene of western North America. J. Vertebr. Paleontol. 9: 459–470.

    Google Scholar 

  • Van Valkenburgh, B. (1990). Skeletal and dental predictors of body mass in carnivores. In: Body Size in Mammalian Paleobiology: Estimation and Biological Implications, J. Damuth and B. J. MacFadden, eds., pp. 181–205, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Western, D. (1979). Size, life history and ecology in mammals. Afr. J. Ecol. 17: 185–204.

    Google Scholar 

  • Wood, B. A. (1979). An analysis of tooth and body size relationships in five primate taxa. Folia Primatol. 31: 187–211.

    Google Scholar 

  • Wood, C. B., and Clemens, W. A. (2001). A new specimen and a functional reassociation of the molar dentition of Batodon tenuis (Placentalia, incertae sedis), Latest Cretaceous (Lancian), North America. Bull. Mus. Comp. Zool. 156: 99–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, C.L. A First Look at Estimating Body Size in Dentally Conservative Marsupials. Journal of Mammalian Evolution 10, 1–21 (2003). https://doi.org/10.1023/A:1025545023221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025545023221

Navigation