Skip to main content
Log in

Space Weather in the Equatorial Ionosphere

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The ‘scintillations’ observed on signals received in the equatorial region from GPS satellites are due to plasma instabilities in the F region of the ionosphere, also detected as spread F. These instabilities give rise to depletions of ionisation or ‘bubbles’. The occurrence of these events and their relation to the equatorial electrojet are reviewed. Possibilities of short-term forecasting are examined with particular attention to problems encountered in modelling the equatorial electrojet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdu, M. A.: 2001, ‘Outstanding Problems in the Equatorial Ionosphere-Thermosphere Electrodynamics Relevant to Spread F’, J.Atmos.Solar Terr.Phys. 63, 869-884.

    Article  ADS  Google Scholar 

  • Anderson, D. N., Anghel, A., Yumoto, K., Ishitsuka, M. and Kudeki, E.: 2002, ‘Estimating Daytime Vertical E × B Drift Velocities in the Equatorial F-region Using Ground-based Magnetometer Observations’, Geophys.Res.Lett. 10.1029/2001GL014562.

  • Blanc, M. and Richmond, A. D.: 1980, ‘The Ionospheric Disturbance Dynamo’, J.Geophys.Res. 85, 1669.

    ADS  Google Scholar 

  • Cervera, M. A., Thomas, R. M., Groves, K. M., Ramli, A. G. and Effendy: 2001, ‘Validation of WBMOD in the Southeast Asian Region’, Radio Sci. 36, 1559-1572.

    Article  ADS  Google Scholar 

  • Dandekar, B. S., Sales, G. S., Weijers, B. and Reynolds, D.: 1998, ‘Study of Equatorial Clutter Using Observed and Simulated Long-range Backscatter Ionograms’, Radio Sci. 33, 1135-1157.

    Article  ADS  Google Scholar 

  • Du, J. and Stening, R. J.: 1999, ‘Simulating the Ionospheric Dynamo-I. Simulation Model and Flux Tube Integrated Conductivities’, J.Atmos.Solar Terr.Phys. 61, 913-923.

    Article  ADS  Google Scholar 

  • Devasia, C. V., Jyoti, N., Subbarao, K. S. V., Viswanathan, K. S., Diwakar Tiwari and Sridharan, R.: 2002, ‘On the Plausible Linkage of Thermospheric Meridional Winds with the Equatorial Spread F’, J.Atmos.Solar.Terr.Phys. 64, 1-12.

    Article  ADS  Google Scholar 

  • Fambitakoye, O. and Mayaud, P. N.: 1976, ‘Equatorial Electrojet and Regular Daily Variation SR-I. A Determination of the Equatorial Electrojet Parameters’, J.Atmos.Terr.Phys. 38, 1-17.

    Article  ADS  Google Scholar 

  • Fambitakoye, O., Mayaud, P. N. and Richmond, A. D.: 1976, ‘Equatorial Electrojet and Regular Daily Variation SR-III. Comparison of Observations with a Physical Model’, J.Atmos.Terr.Phys. 38, 113-121.

    Article  ADS  Google Scholar 

  • Fejer, B. G., Scherliess, L. and de Paula, E. R.: 1999, ‘Effects of the Vertical Plasma Drift Velocity on the Generation and Evolution of Equatorial Spread F’, J.Geophys.Res. 104, 19,859-19,869.

    Article  ADS  Google Scholar 

  • Fesen, C. G., Crowley, G., Roble, R. G., Richmond, A. D. and Fejer, B. G.: 2000, ‘Simulation of the Pre-reversal Enhancement in the Low Latitude Vertical Ion Drifts’, Geophys.Res.Lett. 27, 1851-1854.

    Article  ADS  Google Scholar 

  • Heron, M. L. and McNamara, L. F.: 1979, ‘Transequatorial VHF Propagation Through Equatorial Plasma Bubbles’, Radio Sci. 14, 897-910.

    ADS  Google Scholar 

  • Hysell, D. L. and Burcham, J. D.: 2002, ‘Long Term Studies of Equatorial Spread F using the JULIA Radar at Jicamarca’, J.Atmos.Solar Terr.Phys., in press.

  • Mann, R. I. and Schlapp, D. M.: 1988, ‘The Equatorial Electrojet and Day-to-day Variability of Sq’, J.Atmos.Terr.Phys. 50, 57.

    Article  ADS  Google Scholar 

  • Millward, G. H., Müller-Wodarg, I. C. F., Aylward, A. D., Fuller-Rowell, T. J., Richmond, A. D.and Moffett, R. J.: 2001, ‘An Investigation into the Influence of Tidal Forcing on F Region Equatorial Vertical Ion Drift using a Global Ionosphere-thermosphere Model with Coupled Electrodynamics’, J.Geophys.Res. 106, 24733-24744.

    Article  ADS  Google Scholar 

  • Olson, W. P.: 1970, ‘Contribution of Nonionospheric Currents to the Quiet Daily Magnetic Variation at the Earth's Surface’, J.Geophys.Res. 75, 7244-7249.

    Article  ADS  Google Scholar 

  • Onwumechili, C. A.: 1992, ‘Study of the Return Current of the Equatorial Electrojet’, J.Geomagn.Geoelectr. 44, 1.

    Google Scholar 

  • Richmond, A. D.: 1973a, ‘Equatorial Electrojet, Part 1: Development of a Model Including Winds and Instabilities’, J.Atmos.Terr.Phys. 35, 1083-1103.

    Article  ADS  Google Scholar 

  • Richmond, A. D.: 1973b, ‘Equatorial Electrojet-II. Use of the Model to Study the Equatorial Ionosphere’, J.Atmos.Terr.Phys. 35, 1105-1118.

    Article  ADS  Google Scholar 

  • Secan, J. A., Bussey, R. M., Fremouw, E. J. and Basu, S.: 1995, ‘An Improved Model of Equatorial Scintillation’, Radio Sci. 30, 607-617.

    Article  ADS  Google Scholar 

  • Stening, R. J.: 1977, ‘Magnetic Variations at Other Latitudes During Reverse Equatorial Electrojet’, J.Atmos.Terr.Phys. 39, 1071-1077.

    Article  ADS  Google Scholar 

  • Stening, R. J.: 1985, ‘Modeling the Equatorial Electrojet’, J.Geophys.Res. 90, 1705-1720.

    ADS  Google Scholar 

  • Stening, R. J.: 1995, ‘What Drives the Equatorial Electrojet?’, J.Atmos.Terr.Phys. 57, 1117-1128.

    Article  ADS  Google Scholar 

  • Stening, R. J. and Fejer, B. G.: 2001, ‘The Lunar Tide in the Equatorial F Region Vertical Ion Drift Velocity’, J.Geophys.Res. 106, 221-226.

    Article  ADS  Google Scholar 

  • Sultan, P. J.: 1996, ‘Linear Theory and Modelling of the Rayleigh-Taylor Instability Leading to the Occurrence of Equatorial Spread F’, J.Geophys.Res. 101, 26875-26891.

    Article  ADS  Google Scholar 

  • Thomas, R. M., Cervera, M. A., Eftaxiadis, K., Manurung, S. L., Saroso, S., Effendy, Ramli, A. G., Salwa Hassan, W., Rahman, H., Dalimin, M. N., Groves K. M. and Wang, Y.: 2001, ‘A Regional GPS Receiver Network for Monitoring Equatorial Scintillation and Total Electron Content’, Radio Sci. 36, 1545-1557.

    Article  ADS  Google Scholar 

  • Tsunoda, R. T.: 1985, ‘Control of the Seasonal and Longitudinal Occurrence of Equatorial scintillation by Longitudinal Gradient in Integrated Pedersen Conductivity’, J.Geophys.Res. 90, 447-456.

    ADS  Google Scholar 

  • Wanninger, L.: 1993, ‘Effects of the Equatorial Ionosphere on GPS’, GPS World, 48-54, July 1993.

  • Whalen, J. A.: 2002, ‘Dependence of Equatorial Bubbles and Bottomside Spread F on Season, Magnetic Activity, and E × B Drift Velocity during Solar Maximum’, J.Geophys.Res. 107, 10.1029/2001JA000039.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stening, R. Space Weather in the Equatorial Ionosphere. Space Science Reviews 107, 263–271 (2003). https://doi.org/10.1023/A:1025544310773

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025544310773

Navigation