Skip to main content
Log in

Modelling of the electromagnetic field in the interplanetary space and in the Earth's magnetosphere

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and Stegun, I. A.: 1972, Handbook of Mathematical Functions, 8th ed., Dover, Mineola New York, pp. 832.

    MATH  Google Scholar 

  • Alexeev, I. I. and Bobrovnikov, S. Yu.: 2002, ‘Substorm Study on the Basis of Paraboloid Model of the Magnetosphere’, Geomagnetizm and Aeron.Int. 3N 1, 35-44.

    Google Scholar 

  • Alexeev, I. I. and Feldstein, Y. I.: 2001, ‘Modeling of Geomagnetic Field During Magnetic Storms and Comparison with Observations’, J.Atmos.Sol.Terr.Phys. 63, 331-340.

    Article  Google Scholar 

  • Alexeev, I. I. and Kalegaev, V. V.: 1995, ‘Magnetic Field and the Plasma Flow Structure Near the Magnetopause’, J.Geophys.Res. 100, 19,267-19,276.

    Article  ADS  Google Scholar 

  • Alexeev, I. I. et al.: 1982, ‘On Interplanetary Electric and Magnetic Fields’, Solar Physics 79, 385-397.

    Article  ADS  Google Scholar 

  • Alexeev, I. I. et al.: 1996, ‘Magnetic Storms and Magnetotail Currents’, J.Geophys.Res. 101, 7737-7748.

    Article  ADS  Google Scholar 

  • Alexeev, I. I. et al.: 2001, ‘Dynamic Model of the Magnetosphere: Case Study for January 9-12, 1997’, J.Geophys.Res. 106, 25,683-25,694.

    Article  ADS  Google Scholar 

  • Balogh, A. and Smith, E. J.: 2001, ‘The Heliospheric Magnetic Field at Solar Maximum: Ulysses Observations’, Space Sci.Rev. 97, N 1-4, 148-160.

    ADS  Google Scholar 

  • Burton, R. K. et al.: 1975, ‘An Empirical Relationship Between Interplanetary Conditions and Dst’, J.Geophys.Res. 80, 4204-4213.

    ADS  Google Scholar 

  • Clauer C. R. Jr. et al.: 2001, ‘Special Features of the September 24-27, 1998 Storm During High Solar Wind Dynamic Pressure and Northward Interplanetary Magnetic Field’, J.Geophys.Res. 106, 25,695-25,712.

    Article  ADS  Google Scholar 

  • Dalin, P. et al.: 2002, ‘A Survey of Large, Rapid Solar Wind Dynamic Pressure Changes Observed by Interball 1 and IMP 8’, Ann.Geophys. 20, 293-299.

    Article  ADS  Google Scholar 

  • Dessler, A. J. and Parker, E. N.: 1959, ‘Hydromagnetic Theory of Geomagnetic Storms’, J.Geophys.Res. 64, 2239-2252.

    ADS  Google Scholar 

  • Feldstein, Y. I. et al.: 1999, ‘Dynamics of the Auroral Elecrtojets and Their Mapping to the Magnetosphere’, Ragiation Measurements 30, N 5, 579-587.

    Article  Google Scholar 

  • Iijima, T. and Potemra, T. A.: 1976, ‘The Amplitude Distribution of Field-Aligned Currents at Northern High Latitudes Observed by Triad’, J.Geophys.Res. 81, 2165-2174.

    Article  ADS  Google Scholar 

  • Kalegaev, V.: 2000, ‘Magnetosheath Conditions and Magnetopause Structure for High Magnetic Shear’, Phys.and Chem.of the Earth 25, 173-176.

    ADS  Google Scholar 

  • McComas, D. J. et al.: 2000, ‘Solar Wind Observations over Ulysses' First Full Polar Orbit’, J.Geophys.Res. 105, 10,419-10,433.

    Article  ADS  Google Scholar 

  • Moffatt, H. K.: 1978, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge Univ. Press, New York, pp. 244.

    Google Scholar 

  • O'Brien, T. P. and McPherron, R. L.: 2000, ‘An Empirical Phase Space Analysis of Ring Current Dynamics: Solar Wind Control of Injection and Decay’, J.Geophys.Res. 105, 7707-7719.

    Article  ADS  Google Scholar 

  • Paschmann, G. B. et al.: 1979, ‘Plasma Acceleration at the Earth's Magnetopause: Evidence for Magnetic Reconnection’, Nature 282, 243-246.

    Article  ADS  Google Scholar 

  • Phan, T.-D. et al.: 1994, ‘The Magnetosheath Region Adjacent to the Dayside Magnetopause: AMPTE/IRM Observations’, J.Geophys.Res. 99, 121-141.

    Article  ADS  Google Scholar 

  • Phan, T.-D. et al.: 1997, ‘Low-Latitude Dusk Flank Magnetosheath, Magnetopause, and Boundary Layer for Low Magnetic Shear: Wind Observations’, J.Geophys.Res. 102, 19,883-19,895.

    Article  ADS  Google Scholar 

  • Turner, N. E. et al.: 2000, ‘Evaluation of the Tail Current Contribution to Dst’, J.Geophys.Res. 105, No. A3, 5431-5440.

    Article  ADS  Google Scholar 

  • Van Dyke, M.: 1965, Perturbation Methods in Fluid Mechanics, Academic Press, San Diego, California, pp. 1-229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexeev, I.I., Belenkaya, E.S., Bobrovnikov, S.Y. et al. Modelling of the electromagnetic field in the interplanetary space and in the Earth's magnetosphere. Space Science Reviews 107, 7–26 (2003). https://doi.org/10.1023/A:1025542915800

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025542915800

Navigation